コード例 #1
0
def predict_train(config, sess):
    """Train an NTM for the copy task given a TensorFlow session, which is a
    connection to the C++ backend"""

    if not os.path.isdir(config.checkpoint_dir):
        raise Exception(" [!] Directory %s not found" % config.checkpoint_dir)

    # delimiter flag-like vector inputs indicating the start and end
    # you can see these in the figure examples in the README
    # this is kind of defined redundantly
    start_symbol = np.zeros([config.input_dim], dtype=np.float32)
    start_symbol[0] = 1
    end_symbol = np.zeros([config.input_dim], dtype=np.float32)
    end_symbol[1] = 1

    # initialise the neural turing machine and the neural-net controller thing
    cell = NTMCell(input_dim=config.input_dim,
                   output_dim=config.output_dim,
                   controller_layer_size=config.controller_layer_size,
                   write_head_size=config.write_head_size,
                   read_head_size=config.read_head_size)
    ntm = NTM(cell, sess, config.min_length, config.max_length*3)

    print(" [*] Initialize all variables")
    tf.initialize_all_variables().run()
    print(" [*] Initialization finished")

    start_time = time.time()
    for idx in xrange(config.epoch):
        # generate a sequence of random length
        seq_length = randint(config.min_length, config.max_length) * 4
        inc_seq, comp_seq = generate_predict_sequence(seq_length, config.input_dim - 2)

        # this somehow associates the desired inputs and outputs with the NTM
        feed_dict = {input_:vec for vec, input_ in zip(inc_seq, ntm.inputs)}
        feed_dict.update(
            {true_output:vec for vec, true_output in zip(comp_seq, ntm.true_outputs)}
        )
        feed_dict.update({
            ntm.start_symbol: start_symbol,
            ntm.end_symbol: end_symbol
        })

        # this runs the session and returns the current training loss and step
        # I'm kind of surprised it returns the step, but whatevs
        _, cost, step = sess.run([ntm.optims[seq_length],
                                  ntm.get_loss(seq_length),
                                  ntm.global_step], feed_dict=feed_dict)

        # how does one use these checkpoints?
        if idx % 100 == 0:
            ntm.save(config.checkpoint_dir, 'copy', step)

        if idx % print_interval == 0:
            print("[%5d] %2d: %.2f (%.1fs)" \
                % (idx, seq_length, cost, time.time() - start_time))

    print("Training Copy task finished")
    return cell, ntm
コード例 #2
0
ファイル: copy.py プロジェクト: wangxiong2015/NTM-tensorflow
def copy_train(config):
    sess = config.sess

    if not os.path.isdir(config.checkpoint_dir):
        raise Exception(" [!] Directory %s not found" % config.checkpoint_dir)

    # delimiter flag for start and end
    start_symbol = np.zeros([config.input_dim], dtype=np.float32)
    start_symbol[0] = 1
    end_symbol = np.zeros([config.input_dim], dtype=np.float32)
    end_symbol[1] = 1

    cell = NTMCell(input_dim=config.input_dim,
                   output_dim=config.output_dim,
                   controller_layer_size=config.controller_layer_size,
                   write_head_size=config.write_head_size,
                   read_head_size=config.read_head_size)
    ntm = NTM(cell, sess, config.min_length, config.max_length)

    print(" [*] Initialize all variables")
    tf.initialize_all_variables().run()
    print(" [*] Initialization finished")

    start_time = time.time()
    for idx in xrange(config.epoch):
        seq_length = randint(config.min_length, config.max_length)
        seq = generate_copy_sequence(seq_length, config.input_dim - 2)

        feed_dict = {input_: vec for vec, input_ in zip(seq, ntm.inputs)}
        feed_dict.update({
            true_output: vec
            for vec, true_output in zip(seq, ntm.true_outputs)
        })
        feed_dict.update({
            ntm.start_symbol: start_symbol,
            ntm.end_symbol: end_symbol
        })

        _, cost, step = sess.run([
            ntm.optims[seq_length],
            ntm.get_loss(seq_length), ntm.global_step
        ],
                                 feed_dict=feed_dict)

        if idx % 100 == 0:
            ntm.save(config.checkpoint_dir, 'copy', step)

        if idx % print_interval == 0:
            print("[%5d] %2d: %.2f (%.1fs)" \
                % (idx, seq_length, cost, time.time() - start_time))

    print("Training Copy task finished")
    return cell, ntm
コード例 #3
0
ファイル: copy.py プロジェクト: Beronx86/NTM-tensorflow
def copy_train(config):
    sess = config.sess

    if not os.path.isdir(config.checkpoint_dir):
        raise Exception(" [!] Directory %s not found" % config.checkpoint_dir)

    # delimiter flag for start and end
    start_symbol = np.zeros([config.input_dim], dtype=np.float32)
    start_symbol[0] = 1
    end_symbol = np.zeros([config.input_dim], dtype=np.float32)
    end_symbol[1] = 1

    cell = NTMCell(input_dim=config.input_dim,
                   output_dim=config.output_dim,
                   controller_layer_size=config.controller_layer_size,
                   write_head_size=config.write_head_size,
                   read_head_size=config.read_head_size)
    ntm = NTM(cell, sess, config.min_length, config.max_length)

    print(" [*] Initialize all variables")
    tf.initialize_all_variables().run()
    print(" [*] Initialization finished")

    start_time = time.time()
    for idx in xrange(config.epoch):
        seq_length = randint(config.min_length, config.max_length)
        seq = generate_copy_sequence(seq_length, config.input_dim - 2)

        feed_dict = {input_:vec for vec, input_ in zip(seq, ntm.inputs)}
        feed_dict.update(
            {true_output:vec for vec, true_output in zip(seq, ntm.true_outputs)}
        )
        feed_dict.update({
            ntm.start_symbol: start_symbol,
            ntm.end_symbol: end_symbol
        })

        _, cost, step = sess.run([ntm.optims[seq_length],
                                  ntm.get_loss(seq_length),
                                  ntm.global_step], feed_dict=feed_dict)

        if idx % 100 == 0:
            ntm.save(config.checkpoint_dir, 'copy', step)

        if idx % print_interval == 0:
            print("[%5d] %2d: %.2f (%.1fs)" \
                % (idx, seq_length, cost, time.time() - start_time))

    print("Training Copy task finished")
    return cell, ntm