コード例 #1
0
ファイル: cosmics.py プロジェクト: mnicholl/pessto
def clean_image(img, cleanimg):
    # print "LOGX:: Entering `clean_image` method/function in %(__file__)s" %
    # globals()
    import ntt
    from ntt.util import readkey3, readhdr, delete
    array, header = ntt.cosmics.fromfits(img, verbose=False)
    import warnings

    def fxn():
        # print "LOGX:: Entering `fxn` method/function in %(__file__)s" %
        # globals()
        warnings.warn(" ", DeprecationWarning)

    original_filters = warnings.filters[:]
    # Ignore warnings.
    warnings.simplefilter("ignore")
    try:
        c = ntt.cosmics.cosmicsimage(array, gain=readkey3(header, 'gain'), readnoise=readkey3(
            header, 'ron'), sigclip=5.0, sigfrac=0.3, objlim=5.0, verbose=False)
        c.run(maxiter=4, verbose=False)
        fxn()
    finally:
        warnings.filters = original_filters

    if not cleanimg:
        delete(img)
        cleanimg = img
    ntt.cosmics.tofits(cleanimg, c.cleanarray, header, verbose=False)
    return cleanimg
コード例 #2
0
ファイル: sofispec2Ddef.py プロジェクト: svalenti/pessto
def skysofifrom2d(fitsfile, skyfile):
    # print "LOGX:: Entering `skysofifrom2d` method/function in %(__file__)s"
    # % globals()
    import ntt
    from ntt.util import readhdr, readkey3, delete
    from numpy import mean, arange, compress

    try:
        from astropy.io import fits as pyfits
    except:
        import pyfits

    from numpy import interp as ninterp

    hdr = readhdr(fitsfile)
    _grism = readkey3(hdr, 'grism')
    if _grism == 'GR':
        _order1 = 10
    else:
        _order1 = 6

    yy1 = pyfits.open(fitsfile)[0].data[:, :].mean(1)
    crval2 = readkey3(hdr, 'CRVAL2')
    cd2 = readkey3(hdr, 'CD2_2')
    xx1 = arange(len(yy1))
    aa1 = crval2 + (xx1) * cd2
    yy1cut = compress((aa1 < 18400) | (aa1 > 18650), yy1)
    aa1cut = compress((aa1 < 18400) | (aa1 > 18650), aa1)
    yy1cut1 = compress((aa1cut < 11600) | (aa1cut > 11800), yy1cut)
    aa1cut1 = compress((aa1cut < 11600) | (aa1cut > 11800), aa1cut)
    yy1interp = ninterp(aa1, aa1cut1, yy1cut1)
    delete('_new3.fits')
    hdu = pyfits.PrimaryHDU(yy1interp)
    hdulist = pyfits.HDUList([hdu])
    hdulist.writeto('_new3.fits')
    hdulist.close()
    ntt.util.updateheader('_new3.fits',0,{'CRVAL1':[crval2,''],'CD1_1':[cd2,'']})
#    hdulist[0].header.update('CRVAL1', crval2)
#    hdulist[0].header.update('CD1_1', cd2)

    fitsfile = ntt.efoscspec2Ddef.continumsub('_new3.fits', _order1, 1)
    yy1 = pyfits.open(fitsfile)[0].data
    crval2 = pyfits.open(fitsfile)[0].header.get('CRVAL1')
    cd2 = pyfits.open(fitsfile)[0].header.get('CD1_1')
    xx1 = arange(len(yy1))
    aa1 = crval2 + (xx1) * cd2

    skyff = pyfits.open(skyfile)[0].data
    crval1 = pyfits.open(skyfile)[0].header.get('CRVAL1')
    cd1 = pyfits.open(skyfile)[0].header.get('CD1_1')
    skyxx = arange(len(skyff))
    skyaa = crval1 + (skyxx) * cd1
    shift = ntt.efoscspec2Ddef.checkwavelength_arc(
        aa1, yy1, skyaa, skyff, '', '')
    delete('_new3.fits')
    return shift
コード例 #3
0
ファイル: soficalibdef.py プロジェクト: svalenti/pessto
def makeillumination(lista,flatfield):#,outputfile,illum_frame):
    import os,glob,string,re
    from astropy.io import fits as pyfits
    import ntt
    from ntt.util import readhdr, readkey3, delete, display_image, defsex,  name_duplicate, correctcard
    from numpy import compress, array, argmax, argmin, min, argsort, float32
    import datetime
    MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days
    _date = readkey3(readhdr(lista[0]), 'date-night')
    _filter = readkey3(readhdr(lista[0]), 'filter')
    illum_frame = name_duplicate(
        lista[0], 'illum_' + _date + '_' + _filter + '_' + str(MJDtoday), '')
    from pyraf import iraf
    iraf.images(_doprint=0)
    iraf.imutil(_doprint=0)
    iraf.utilities(_doprint=0)
    iraf.noao(_doprint=0)
    iraf.imred(_doprint=0)
    iraf.ccdred(_doprint=0)
    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    iraf.generic(_doprint=0)
    toforget = ['digiphot.daophot', 'imutil.imarith',
                'image', 'utilities.surfit']
    for t in toforget:
        iraf.unlearn(t)
    n = len(lista)
#   start loop to read image names from the input file
    lista1 = []
    iraf.ccdred.verbose = 'no'
    ff = open('templist.lst', 'w')
    for i in range(0, len(lista)):
        ff.write('C' + lista[i] + '\n')
        delete('C' + lista[i])
        delete('C' + re.sub('.fits', '_sub.fits', lista[i]))
        ntt.sofiphotredudef.crosstalk(lista[i], 'C' + lista[i])
        iraf.noao.imred.ccdred.ccdproc('C' + lista[i], output='', overscan="no", trim="yes", ccdtype='', darkcor='no', fixpix='no', zerocor="no", flatcor='yes',
                                       illumco='no', trimsec='[1:1024,1:1007]', biassec='', flat=flatfield, illum='')
        correctcard('C' + lista[i])
        lista1.append('C' + lista[i])
    ff.close()
    print '\n### prereducing STD frames to compute illumination correction ........'
    lista2, skyfile = ntt.sofiphotredudef.skysub(lista1, readkey3(
        readhdr(lista1[0]), 'ron'), readkey3(readhdr(lista1[0]), 'gain'), True)
    lista2 = ntt.sofiphotredudef.sortbyJD(lista2)
    print '\n### use x on the star and q  to continue....'
    display_image(lista2[0], 2, '', '', False)
    delete('tmpone.coo')
    iraf.image.tv.imexamine(lista2[0], 2, logfile='tmpone.coo',
                            keeplog='yes', xformat='', yformat='', wcs='logical')
    iraf.tvmark(2, 'tmpone.coo', mark="circle", number='yes',
                label='no', radii=8, nxoffse=5, nyoffse=5, color=204, txsize=2)
    xycoo = iraf.proto.fields('tmpone.coo', '1,2', Stdout=1)
    x0, y0 = string.split(xycoo[0])
    x0 = float(x0)
    y0 = float(y0)
    xcum0 = readkey3(readhdr(lista2[0]), 'xcum')
    ycum0 = readkey3(readhdr(lista2[0]), 'ycum')
    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    iraf.noao.digiphot.daophot.datapars.datamin = -1000
    iraf.noao.digiphot.daophot.datapars.datamax = 60000
    iraf.noao.digiphot.daophot.daopars.function = 'gauss'
    iraf.noao.digiphot.daophot.photpars.zmag = 0
    namesex = defsex('default.sex')
    for i in range(0, len(lista2)):
        j = i + 1
        xcum = readkey3(readhdr(lista2[i]), 'xcum')
        ycum = readkey3(readhdr(lista2[i]), 'ycum')
        xx = x0 - xcum0 + xcum
        yy = y0 - ycum0 + ycum
        # sex objects
        os.system('sex ' + lista2[i] + ' -c ' + namesex + '>  _logsex')
        delete('_logsex')
        xpix = iraf.proto.fields('detections.cat', fields='2', Stdout=1)
        ypix = iraf.proto.fields('detections.cat', fields='3', Stdout=1)
        cm = iraf.proto.fields('detections.cat', fields='4', Stdout=1)
        cm = compress((array(xpix) != ''), array(cm, float))
        ypix = compress((array(xpix) != ''), array(ypix, float))
        xpix = compress((array(xpix) != ''), array(xpix, float))
        if len(xpix) > 300:
            num = 300
        else:
            num = len(xpix) - 1
        xpix = xpix[argsort(cm)][0:num]
        ypix = ypix[argsort(cm)][0:num]
        distance = (ypix - yy)**2 + (xpix - xx)**2
        xx1, yy1 = xpix[argmin(distance)], ypix[argmin(distance)]
        f = open('tmpone.coo', 'w')
        f.write(str(xx1) + ' ' + str(yy1) + '\n')
        f.close()
        display_image(lista2[i], 1, '', '', False)
        iraf.tvmark(1, 'tmpone.coo', mark="circle", number='yes',
                    label='no', radii=8, nxoffse=5, nyoffse=5, color=204, txsize=2)
        answ = 'n'
        while answ != 'y':
            answ = raw_input('selected the right one [[y]/n] ?')
            if not answ:
                answ = 'y'
            if answ in ['y', 'YES', 'yes', 'Y']:
                print lista2[i]
                delete('pippo.' + str(j) + '.mag')
                gggg = iraf.digiphot.daophot.phot(
                    lista2[i], "tmpone.coo", output="pippo." + str(j) + ".mag", verify='no', interac='no', Stdout=1)
                try:
                    float(string.split(gggg[0])[3])
                    answ = 'y'
                except:
                    print '\n### warning'
                    answ = 'n'
            else:
                print '\n### select the std star'
                display_image(lista2[i], 1, '', '', False)
                iraf.image.tv.imexamine(lista2[
                                        i], 1, logfile='tmpone.coo', keeplog='yes', xformat='', yformat='', wcs='logical')
                xycoo = iraf.proto.fields('tmpone.coo', '1,2', Stdout=1)
                x2, y2 = string.split(xycoo[0])
                f = open('tmpone.coo', 'w')
                f.write(str(x2) + ' ' + str(y2) + '\n')
                f.close()
                delete('pippo.' + str(j) + '.mag')
                print '###### new selection ' + str(x2), str(y2)
                gggg = iraf.digiphot.daophot.phot(
                    lista2[i], "tmpone.coo", output='pippo.' + str(j) + '.mag', verify='no', interac='no', Stdout=1)
                try:
                    float(string.split(gggg[0])[3])
                    answ = 'y'
                except:
                    print '\n### warning'
                    answ = 'n'

    os.system('ls pippo.*.mag > tempmag.lst')
    tmptbl0 = iraf.txdump(textfile="@tempmag.lst",
                          fields="XCENTER,YCENTER,FLUX", expr='yes', Stdout=1)
    ff = open('magnitudini', 'w')
    for i in tmptbl0:
        ff.write(i + '\n')
    ff.close()
#   delete the temporary images and files
    delete("temp*.fits")
    delete('temp*.lst')
    delete(illum_frame)
    print '\n### fitting the illumination surface...'
    aaa = iraf.utilities.surfit('magnitudini', image=illum_frame, function="polynomial",
                                xorder=2, yorder=2, xterms="full", ncols=1024, nlines=1024, Stdout=1)
    iraf.noao.imred.generic.normalize(illum_frame)
    correctcard(lista[0])
    data, hdr = pyfits.getdata(illum_frame, 0, header=True)
    data0, hdr0 = pyfits.getdata(lista[0], 0, header=True)
    delete(illum_frame)
    pyfits.writeto(illum_frame, float32(data), hdr0)
    flatfield0 = string.split(flatfield, '/')[-1]
    ntt.util.updateheader(
        illum_frame, 0, {'MKILLUM': [flatfield0, 'flat field']})
    display_image(illum_frame, 1, '', '', False)
    for i in range(0, len(lista)):  # in lista:
        img = lista[i]
        delete('pippo.' + str(i) + '.mag')
        delete('C' + img)
        delete('C' + re.sub('.fits', '_sky.fits', img))
#    delete('C*.fits.mag.1')
#    iraf.hedit(illum_frame,'MKILLUM','Illum. corr. created '+flatfield,add='yes',update='yes',verify='no')
    return illum_frame
コード例 #4
0
ファイル: soficalibdef.py プロジェクト: svalenti/pessto
def makeflat(lista):
    # print "LOGX:: Entering `makeflat` method/function in %(__file__)s" %
    # globals()
    flat = ''
    import datetime
    import glob
    import os
    import ntt
    from ntt.util import readhdr, readkey3, delete, name_duplicate, updateheader, correctcard
    from pyraf import iraf
    iraf.images(_doprint=0)
    iraf.imutil(_doprint=0)
    iraf.imgeom(_doprint=0)
    # iraf.blkavg(_doprint=0)
    iraf.noao(_doprint=0)
    iraf.imred(_doprint=0)
    iraf.generic(_doprint=0)
    toforget = ['imgeom.blkavg', 'imutil.imarith',
                'immatch.imcombine', 'noao.imred']
    for t in toforget:
        iraf.unlearn(t)
    import datetime
    MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days
    _date = readkey3(readhdr(lista[0]), 'date-night')
    _filter = readkey3(readhdr(lista[0]), 'filter')
    output = name_duplicate(
        lista[3], 'flat_' + str(_date) + '_' + str(_filter) + '_' + str(MJDtoday), '')
    if os.path.isfile(output):
        answ = raw_input('file already prooduced, do again [y/[n]] ? ')
        if not answ:
            answ = 'n'
    else:
        answ = 'y'
    if answ in ['yes', 'y', 'YES', 'Y', 'Yes']:
        delete("temp_off.fits,temp_off_mask.fits,temp_on_mask.fits,temp_on.fits")
        iraf.image.immatch.imcombine(
            lista[0] + ',' + lista[7], output="temp_off.fits")
        iraf.image.immatch.imcombine(
            lista[1] + ',' + lista[6], output="temp_off_mask.fits")
        iraf.image.immatch.imcombine(
            lista[2] + ',' + lista[5], output="temp_on_mask.fits")
        iraf.image.immatch.imcombine(
            lista[3] + ',' + lista[4], output="temp_on.fits")
        #   create the bias correction for the flat-on according to the
        #   Lidman technique0
        delete("temp_onA.fits,temp_onC.fits,temp_onB.fits,temp_onAC.fits,temp_onACB.fits,temp_onACB_2D.fits")
        delete("temp_on_bias.fits")
        iraf.imgeom.blkavg(
            input="temp_on.fits[500:600,*]", output="temp_onA.fits", option="average", b1=101, b2=1)
        iraf.imgeom.blkavg(
            input="temp_on_mask.fits[500:600,*]", output="temp_onC.fits", option="average", b1=101, b2=1)
        iraf.imgeom.blkavg(
            input="temp_on_mask.fits[50:150,*]", output="temp_onB.fits", option="average", b1=101, b2=1)
        iraf.imutil.imarith("temp_onA.fits", "-",
                            "temp_onC.fits", "temp_onAC.fits")
        iraf.imutil.imarith("temp_onAC.fits", "+",
                            "temp_onB.fits", "temp_onACB.fits")
        iraf.imgeom.blkrep(input="temp_onACB.fits",
                           output="temp_onACB_2D.fits", b1=1024, b2=1)
        iraf.imutil.imarith("temp_on.fits", "-",
                            "temp_onACB_2D.fits", "temp_on_bias.fits")
    #   same as above for the flat-off
        delete("temp_offA.fits,temp_offC.fits,temp_offB.fits,temp_offAC.fits,temp_offACB.fits,temp_offACB_2D.fits")
        delete("temp_off_bias.fits")
        iraf.imgeom.blkavg(
            input="temp_off.fits[500:600,*]", output="temp_offA.fits", option="average", b1=101, b2=1)
        iraf.imgeom.blkavg(
            input="temp_off_mask.fits[500:600,*]", output="temp_offC.fits", option="average", b1=101, b2=1)
        iraf.imgeom.blkavg(
            input="temp_off_mask.fits[50:150,*]", output="temp_offB.fits", option="average", b1=101, b2=1)
        iraf.imutil.imarith("temp_offA.fits", "-",
                            "temp_offC.fits", "temp_offAC.fits")
        iraf.imutil.imarith("temp_offAC.fits", "+",
                            "temp_offB.fits", "temp_offACB.fits")
        iraf.imgeom.blkrep(input="temp_offACB.fits",
                           output="temp_offACB_2D.fits", b1=1024, b2=1)
        iraf.imutil.imarith("temp_off.fits", "-",
                            "temp_offACB_2D.fits", "temp_off_bias.fits")
        #   create the corrected flat-field
        #    output=name_duplicate("temp_on_bias.fits",'flat_'+str(_date)+'_'+str(_filter)+'_'+str(MJDtoday),'')
        output = name_duplicate(
            lista[3], 'flat_' + str(_date) + '_' + str(_filter) + '_' + str(MJDtoday), '')
    #    print lista[0],'flat_'+str(_date)+'_'+str(_filter)+'_'+str(MJDtoday)
        delete(output)
        iraf.imutil.imarith("temp_on_bias.fits", "-",
                            "temp_off_bias.fits", output)
        iraf.noao.imred.generic.normalize(output)  # normalize the flat-field
        correctcard(output)
        delete("temp_on*.fits")  # delete the temporary images
        delete("temp_off*.fits")
        print 'flat -> ' + str(output)
    else:
        print 'skip redoing the flat'
    return output
コード例 #5
0
ファイル: cosmics.py プロジェクト: mnicholl/pessto
def lacos(_input0, output='clean.fits', outmask='mask.fits', gain=1.3, readn=9, xorder=9, yorder=9, sigclip=4.5, sigfrac=0.5, objlim=1, verbose=True, interactive=False):
    # print "LOGX:: Entering `lacos` method/function in %(__file__)s" %
    # globals()
    import ntt
    from ntt.util import delete
    import sys
    import re
    import os
    import string
    from pyraf import iraf
    import numpy as np

    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits', 'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits', 'starreject.fits'
    inputmask = 'inputmask.fits'
    # set some parameters in standard IRAF tasks
    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # create Laplacian kernel
    # laplkernel = np.array([[0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0]])
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    delete(galaxy)
    delete(skymod)
    delete(oldoutput)

    if not output:
        output = _input0
    else:
        delete(output)
        iraf.imcopy(_input0, output, verbose='no')

    delete('_xxx.fits,_yyy.fits')
    iraf.imcopy(_input0 + '[350:550,*]', '_xxx.fits', verbose='no')
    _input = '_xxx.fits'

    arrayinput, headerinput = ntt.cosmics.fromfits(_input, verbose=False)
    ntt.cosmics.tofits(outmask, np.float32(
        arrayinput - arrayinput), headerinput, verbose=False)

    # subtract object spectra if desired
    iraf.fit1d(_input, galaxy, "fit", axis=2, order=9, func="leg", low=4.,
               high=4., nav=1, inter='no', sample="*", niter=3, grow=0, cursor="")
    iraf.imarith(_input, "-", galaxy, oldoutput)
    # Subtract sky lines
    iraf.fit1d(oldoutput, skymod, "fit", axis=1, order=5, func="leg", low=4., high=4.,
               inter='no', sample="*", nav=1, niter=3, grow=0, cursor="")
    iraf.imarith(oldoutput, "-", skymod, oldoutput)

    arrayoldoutput, headeroldoutput = ntt.cosmics.fromfits(
        oldoutput, verbose=False)
    # add object spectra to sky model
    iraf.imarith(skymod, "+", galaxy, skymod)
    delete(med5)
    # add median of residuals to sky model
    iraf.median(oldoutput, med5, 5, 5, zlor='INDEF',
                zhir='INDEF', verbose='no')
#    m5 = ndimage.filters.median_filter(_inputarray, size=5, mode='mirror')
    iraf.imarith(skymod, "+", med5, med5)
    # take second-order derivative (Laplacian) of input image
    # kernel is convolved with subsampled image, in order to remove negative
    # pattern around high pixels
    delete(blk)
    delete(lapla)
    iraf.blkrep(oldoutput, blk, 2, 2)
    iraf.convolve(blk, lapla, '_kernel')
    iraf.imreplace(lapla, 0, upper=0, lower='INDEF')
    delete(deriv2)
    delete(noise)
    iraf.blkavg(lapla, deriv2, 2, 2, option="average")
    # create noise model
    iraf.imutil.imexpr(expr='sqrt(a*' + str(gain) + '+' + str(readn) +
                       '**2)/' + str(gain), a=med5, output=noise, verbose='no')
    iraf.imreplace(med5, 0.00001, upper=0, lower='INDEF')
    # divide Laplacian by noise model
    delete(sigmap)
    iraf.imutil.imexpr(expr='(a/b)/2', a=deriv2, b=noise,
                       output=sigmap, verbose='no')
    # removal of large structure (bright, extended objects)
    delete(med5)
    iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imarith(sigmap, "-", med5, sigmap)
    # find all candidate cosmic rays
    # this selection includes sharp features such as stars and HII regions

    arraysigmap, headersigmap = ntt.cosmics.fromfits(sigmap, verbose=False)
    arrayf = np.where(arraysigmap < sigclip, 0, arraysigmap)
    arrayf = np.where(arrayf > 0.1, 1, arrayf)
    ntt.cosmics.tofits(firstsel, np.float32(
        arrayf), headersigmap, verbose=False)

    # compare candidate CRs to median filtered image
    # this step rejects bright, compact sources from the initial CR list
    # subtract background and smooth component of objects
    delete(med3)
    iraf.median(oldoutput, med3, 3, 3, zlo='INDEF', zhi='INDEF', verbose='no')
    delete(med7)
    delete('_' + med3)
    iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
    iraf.imutil.imexpr(expr='(a-b)/c', a=med3, b=med7,
                       c=noise, output='_' + med3, verbose='no')
    iraf.imreplace('_' + med3, 0.01, upper=0.01, lower='INDEF')
    # compare CR flux to object flux
    delete(starreject)
    iraf.imutil.imexpr(expr='a+b+c', a=firstsel, b=sigmap,
                       c="_" + med3, output=starreject, verbose='no')
    # discard if CR flux <= objlim * object flux
    iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF')
    iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF')
    iraf.imarith(firstsel, "*", starreject, firstsel)

    # grow CRs by one pixel and check in original sigma map
    arrayfirst, headerfirst = ntt.cosmics.fromfits(firstsel, verbose=False)
    arraygfirst = ntt.cosmics.my_convolve_with_FFT2(arrayfirst, gkernel)

    arraygfirst = np.where(arraygfirst > 0.5, 1, arraygfirst)
    arraygfirst = arraygfirst * arraysigmap
    arraygfirst = np.where(arraygfirst < sigclip, 0, arraygfirst)
    arraygfirst = np.where(arraygfirst > 0.1, 1, arraygfirst)

    # grow CRs by one pixel and lower detection limit
    sigcliplow = sigfrac * sigclip
    # Finding neighbouring pixels affected by cosmic rays
    arrayfinal = ntt.cosmics.my_convolve_with_FFT2(arraygfirst, gkernel)
    arrayfinal = np.where(arrayfinal > 0.5, 1, arrayfinal)
    arrayfinal = arrayfinal * arraysigmap
    arrayfinal = np.where(arrayfinal < sigcliplow, 0, arrayfinal)
    arrayfinal = np.where(arrayfinal > 0.1, 1, arrayfinal)

    # determine number of CRs found in this iteration
    arraygfirst = (1 - (arrayfinal - arrayfinal)) * arrayfinal
    npix = [str(int(np.size(np.where(arraygfirst > 0.5)) / 2.))]
    # create cleaned output image; use 3x3 median with CRs excluded
    arrayoutmask = np.where(arrayfinal > 1, 1, arrayfinal)
    ntt.cosmics.tofits(outmask, np.float32(
        arrayoutmask), headerfirst, verbose=False)
    delete(inputmask)
    arrayinputmask = (1 - (10000 * arrayoutmask)) * arrayoldoutput
    ntt.cosmics.tofits(inputmask, np.float32(
        arrayinputmask), headerfirst, verbose=False)
    delete(med5)
    iraf.median(inputmask, med5, 5, 5, zloreject=-
                9999, zhi='INDEF', verbose='no')
    iraf.imarith(outmask, "*", med5, med5)
    delete('_yyy.fits')
    iraf.imutil.imexpr(expr='(1-a)*b+c', a=outmask, b=oldoutput,
                       c=med5, output='_yyy.fits', verbose='no')
    # add sky and object spectra back in
    iraf.imarith('_yyy.fits', "+", skymod, '_yyy.fits')
    # cleanup and get ready for next iteration
    if npix == 0:
        stop = yes
      # delete temp files
    iraf.imcopy('_yyy.fits', output + '[350:550,*]', verbose='no')
    delete(blk + "," + lapla + "," + deriv2 + "," + med5)
    delete(med3 + "," + med7 + "," + noise + "," + sigmap)
    delete(firstsel + "," + starreject)
    delete(finalsel + "," + inputmask)
    delete(oldoutput + "," + skymod + "," + galaxy)
    delete("_" + med3 + ",_" + sigmap)
    delete('_kernel' + "," + '_gkernel')
    delete(outmask)
    delete('_xxx.fits,_yyy.fits')
コード例 #6
0
ファイル: cosmics.py プロジェクト: mnicholl/pessto
def lacos_im(_input, _output='clean.fits', outmask='mask.fits', gain=1.3, readn=9, xorder=9, yorder=9, sigclip=4.5, sigfrac=0.5, objlim=1, skyval=0, niter=2, verbose=True, interactive=False):
    # print "LOGX:: Entering `lacos_im` method/function in %(__file__)s" %
    # globals()
    import ntt
    from ntt.util import delete
    import sys
    import re
    import os
    import string
    from pyraf import iraf
    import numpy as np
    iraf.convolve.bilinear = 'no'
    iraf.convolve.radsym = 'no'
    # make temporary files
    oldoutput, galaxy, skymod, med5 = 'oldoutput.fits', 'galaxy.fits', 'skymod.fits', 'med5.fits'
    blk, lapla, med3, med7, sub5, sigima, finalsel = 'blk.fits', 'lapla.fits', 'med3.fits', 'med7.fits', 'sub5.fits', 'sigima.fits', 'finalsel.fits'
    deriv2, noise, sigmap, firstsel, starreject = 'deriv2.fits', 'noise.fits', 'sigmap.fits', 'firstsel.fits', 'starreject.fits'
    inputmask, gfirstsel = 'inputmask.fits', 'gfirstsel.fits'
    f = open('_kernel', 'w')
    f.write('0 -1 0;\n-1 4 -1;\n0 -1 0')
    f.close()
    # create growth kernel
    f = open('_gkernel', 'w')
    f.write('1 1 1;\n1 1 1;\n1 1 1')
    f.close()
    gkernel = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
    # initialize loop
    usegain = gain
    i = 1
    stop = 'no'
    previous = 0
    if not _output:
        _output = _input

    arrayinput, headerinput = ntt.cosmics.fromfits(_input, verbose=False)
    ntt.cosmics.tofits(outmask, np.float32(
        arrayinput - arrayinput), headerinput, verbose=False)

    delete(oldoutput)
    if skyval > 0:
        arrayoldoutput = arrayinput + skyval
    else:
        arrayoldoutput = arrayinput
    ntt.cosmics.tofits(oldoutput, np.float32(
        arrayoldoutput), headerinput, verbose=False)
    # start iterations
    while stop == 'no':
        # take second-order derivative (Laplacian) of input image
        # kernel is convolved with subsampled image, in order to remove negative
        # pattern around high pixels
        delete(blk)
        delete(lapla)
        delete(deriv2)
        iraf.blkrep(oldoutput, blk, 2, 2)
        iraf.convolve(blk, lapla, '_kernel')
        iraf.imreplace(lapla, 0, upper=0, lower='INDEF', radius=0)
        iraf.blkavg(lapla, deriv2, 2, 2, option="average")
        delete(med5)
        # create model of background flux - 5x5 box should exclude all CRs
        iraf.median(oldoutput, med5, 5, 5, zlo='INDEF',
                    zhi='INDEF', verbose='no')
        iraf.imreplace(med5, 0.0001, upper=0, lower='INDEF', radius=0)
        # create noise model
        delete(noise)
        iraf.imutil.imexpr(expr='sqrt(a*' + str(usegain) + '+' + str(readn) +
                           '**2)/' + str(usegain), a=med5, output=noise, verbose='no')
        # divide Laplacian by noise model
        delete(sigmap)
        iraf.imarith(deriv2, "/", noise, sigmap)
        # Laplacian of blkreplicated image counts edges twice:
        iraf.imarith(sigmap, "/", 2., sigmap)
        # removal of large structure (bright, extended objects)
        delete(med5)
        iraf.median(sigmap, med5, 5, 5, zlo='INDEF', zhi='INDEF', verbose='no')
        arraysigmap, headersigmap = ntt.cosmics.fromfits(sigmap, verbose=False)
        arraymed5, headermed5 = ntt.cosmics.fromfits(med5, verbose=False)
        arraysigmap = arraysigmap - arraymed5
        iraf.imarith(sigmap, "-", med5, sigmap)
        # find all candidate cosmic rays
        # this selection includes sharp features such as stars and HII regions

        delete(firstsel)
        iraf.imcopy(sigmap, firstsel, verbose='no')
        iraf.imreplace(firstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(firstsel, 1, lower=0.1, upper='INDEF', radius=0)
#		arraygfirst=arraysigmap
#		arraygfirst = np.where(arraygfirst<sigclip,0,arraygfirst)
#		arraygfirst = np.where(arraygfirst>0.1,1,arraygfirst)

        # compare candidate CRs to median filtered image
        # this step rejects bright, compact sources from the initial CR list
        # subtract background and smooth component of objects
        delete(med3)
        delete(med7)
        iraf.median(oldoutput, med3, 3, 3, zlo='INDEF',
                    zhi='INDEF', verbose='no')
        iraf.median(med3, med7, 7, 7, zlo='INDEF', zhi='INDEF', verbose='no')
        iraf.imarith(med3, "-", med7, med3)
        iraf.imarith(med3, "/", noise, med3)
        iraf.imreplace(med3, 0.01, upper=0.01, lower='INDEF', radius=0)
        # compare CR flux to object flux
        delete(starreject)
        iraf.imutil.imexpr(expr="(a*b)/c", a=firstsel, b=sigmap,
                           c=med3, output=starreject, verbose='no')
        # discard if CR flux <= objlim * object flux
        iraf.imreplace(starreject, 0, upper=objlim, lower='INDEF', radius=0)
        iraf.imreplace(starreject, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(firstsel, "*", starreject, firstsel)
        # grow CRs by one pixel and check in original sigma map
        delete(gfirstsel)
        iraf.convolve(firstsel, gfirstsel, '_gkernel')
        iraf.imreplace(gfirstsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(gfirstsel, "*", sigmap, gfirstsel)
        iraf.imreplace(gfirstsel, 0, upper=sigclip, lower='INDEF', radius=0)
        iraf.imreplace(gfirstsel, 1, lower=0.1, upper='INDEF', radius=0)
        # grow CRs by one pixel and lower detection limit
        sigcliplow = sigfrac * sigclip
        delete(finalsel)
        iraf.convolve(gfirstsel, finalsel, '_gkernel')
        iraf.imreplace(finalsel, 1, lower=0.5, upper='INDEF', radius=0)
        iraf.imarith(finalsel, "*", sigmap, finalsel)
        iraf.imreplace(finalsel, 0, upper=sigcliplow, lower='INDEF', radius=0)
        iraf.imreplace(finalsel, 1, lower=0.1, upper='INDEF', radius=0)
        # determine number of CRs found in this iteration
        delete(gfirstsel)
        iraf.imutil.imexpr(expr="(1-b)*a", a=outmask,
                           b=finalsel, output=gfirstsel, verbose='no')

        npix = iraf.imstat(gfirstsel, fields="npix",
                           lower=0.5, upper='INDEF', Stdout=1)
        # create cleaned output image; use 3x3 median with CRs excluded
        delete(med5)
        iraf.imarith(outmask, "+", finalsel, outmask)
        iraf.imreplace(outmask, 1, lower=1, upper='INDEF', radius=0)

        delete(inputmask)
        iraf.imutil.imexpr(expr="(1-10000*a)", a=outmask,
                           output=inputmask, verbose='no')
        iraf.imarith(oldoutput, "*", inputmask, inputmask)
        delete(med5)
        iraf.median(inputmask, med5, 5, 5, zloreject=-
                    9999, zhi='INDEF', verbose='no')
        iraf.imarith(outmask, "*", med5, med5)
        if i > 1:
            delete(_output)

        delete(_output)
        iraf.imutil.imexpr(expr="(1.-b)*a+c", a=oldoutput,
                           b=outmask, c=med5, output=_output, verbose='no')

        # cleanup and get ready for next iteration
        delete(oldoutput)
        iraf.imcopy(_output, oldoutput, verbose='no')

        if npix == 0:
            stop = 'yes'
        i = i + 1
        if i > niter:
            stop = 'yes'
        # delete temp files
        delete(blk + "," + lapla + "," + deriv2 + "," + med5)
        delete(med3 + "," + med7 + "," + noise + "," + sigmap)
        delete(firstsel + "," + starreject + "," + gfirstsel)
        delete(finalsel + "," + inputmask)

    if skyval > 0:
        iraf.imarith(_output, "-", skyval, _output)
    delete('_kernel' + "," + '_gkernel')
    delete(oldoutput)
コード例 #7
0
ファイル: soficalibdef.py プロジェクト: mnicholl/pessto
def makeillumination(lista, flatfield):  #,outputfile,illum_frame):
    import os, glob, string, re
    from astropy.io import fits as pyfits
    import ntt
    from ntt.util import readhdr, readkey3, delete, display_image, defsex, name_duplicate, correctcard
    from numpy import compress, array, argmax, argmin, min, argsort, float32
    import datetime
    MJDtoday = 55927 + (datetime.date.today() -
                        datetime.date(2012, 01, 01)).days
    _date = readkey3(readhdr(lista[0]), 'date-night')
    _filter = readkey3(readhdr(lista[0]), 'filter')
    illum_frame = name_duplicate(
        lista[0], 'illum_' + _date + '_' + _filter + '_' + str(MJDtoday), '')
    from pyraf import iraf
    iraf.images(_doprint=0, Stdout=0)
    iraf.imutil(_doprint=0, Stdout=0)
    iraf.utilities(_doprint=0, Stdout=0)
    iraf.noao(_doprint=0, Stdout=0)
    iraf.imred(_doprint=0, Stdout=0)
    iraf.ccdred(_doprint=0, Stdout=0)
    iraf.digiphot(_doprint=0, Stdout=0)
    iraf.daophot(_doprint=0, Stdout=0)
    iraf.generic(_doprint=0, Stdout=0)
    toforget = [
        'digiphot.daophot', 'imutil.imarith', 'image', 'utilities.surfit'
    ]
    for t in toforget:
        iraf.unlearn(t)
    n = len(lista)
    #   start loop to read image names from the input file
    lista1 = []
    iraf.ccdred.verbose = 'no'
    ff = open('templist.lst', 'w')
    for i in range(0, len(lista)):
        ff.write('C' + lista[i] + '\n')
        delete('C' + lista[i])
        delete('C' + re.sub('.fits', '_sub.fits', lista[i]))
        ntt.sofiphotredudef.crosstalk(lista[i], 'C' + lista[i])
        iraf.noao.imred.ccdred.ccdproc('C' + lista[i],
                                       output='',
                                       overscan="no",
                                       trim="yes",
                                       ccdtype='',
                                       darkcor='no',
                                       fixpix='no',
                                       zerocor="no",
                                       flatcor='yes',
                                       illumco='no',
                                       trimsec='[1:1024,1:1007]',
                                       biassec='',
                                       flat=flatfield,
                                       illum='')
        correctcard('C' + lista[i])
        lista1.append('C' + lista[i])
    ff.close()
    print '\n### prereducing STD frames to compute illumination correction ........'
    lista2, skyfile = ntt.sofiphotredudef.skysub(
        lista1, readkey3(readhdr(lista1[0]), 'ron'),
        readkey3(readhdr(lista1[0]), 'gain'), True)
    lista2 = ntt.sofiphotredudef.sortbyJD(lista2)
    print '\n### use x on the star and q  to continue....'
    display_image(lista2[0], 2, '', '', False)
    delete('tmpone.coo')
    iraf.image.tv.imexamine(lista2[0],
                            2,
                            logfile='tmpone.coo',
                            keeplog='yes',
                            xformat='',
                            yformat='',
                            wcs='logical')
    iraf.tvmark(2,
                'tmpone.coo',
                mark="circle",
                number='yes',
                label='no',
                radii=8,
                nxoffse=5,
                nyoffse=5,
                color=204,
                txsize=2)
    xycoo = iraf.proto.fields('tmpone.coo', '1,2', Stdout=1)
    x0, y0 = string.split(xycoo[0])
    x0 = float(x0)
    y0 = float(y0)
    xcum0 = readkey3(readhdr(lista2[0]), 'xcum')
    ycum0 = readkey3(readhdr(lista2[0]), 'ycum')
    iraf.digiphot(_doprint=0, Stdout=0)
    iraf.daophot(_doprint=0, Stdout=0)
    iraf.noao.digiphot.daophot.datapars.datamin = -1000
    iraf.noao.digiphot.daophot.datapars.datamax = 60000
    iraf.noao.digiphot.daophot.daopars.function = 'gauss'
    iraf.noao.digiphot.daophot.photpars.zmag = 0
    namesex = defsex('default.sex')
    for i in range(0, len(lista2)):
        j = i + 1
        xcum = readkey3(readhdr(lista2[i]), 'xcum')
        ycum = readkey3(readhdr(lista2[i]), 'ycum')
        xx = x0 - xcum0 + xcum
        yy = y0 - ycum0 + ycum
        # sex objects
        os.system('sex ' + lista2[i] + ' -c ' + namesex + '>  _logsex')
        delete('_logsex')
        xpix = iraf.proto.fields('detections.cat', fields='2', Stdout=1)
        ypix = iraf.proto.fields('detections.cat', fields='3', Stdout=1)
        cm = iraf.proto.fields('detections.cat', fields='4', Stdout=1)
        cm = compress((array(xpix) != ''), array(cm, float))
        ypix = compress((array(xpix) != ''), array(ypix, float))
        xpix = compress((array(xpix) != ''), array(xpix, float))
        if len(xpix) > 300:
            num = 300
        else:
            num = len(xpix) - 1
        xpix = xpix[argsort(cm)][0:num]
        ypix = ypix[argsort(cm)][0:num]
        distance = (ypix - yy)**2 + (xpix - xx)**2
        xx1, yy1 = xpix[argmin(distance)], ypix[argmin(distance)]
        f = open('tmpone.coo', 'w')
        f.write(str(xx1) + ' ' + str(yy1) + '\n')
        f.close()
        display_image(lista2[i], 1, '', '', False)
        iraf.tvmark(1,
                    'tmpone.coo',
                    mark="circle",
                    number='yes',
                    label='no',
                    radii=8,
                    nxoffse=5,
                    nyoffse=5,
                    color=204,
                    txsize=2)
        answ = 'n'
        while answ != 'y':
            answ = raw_input('selected the right one [[y]/n] ?')
            if not answ:
                answ = 'y'
            if answ in ['y', 'YES', 'yes', 'Y']:
                print lista2[i]
                delete('pippo.' + str(j) + '.mag')
                gggg = iraf.digiphot.daophot.phot(lista2[i],
                                                  "tmpone.coo",
                                                  output="pippo." + str(j) +
                                                  ".mag",
                                                  verify='no',
                                                  interac='no',
                                                  Stdout=1)
                try:
                    float(string.split(gggg[0])[3])
                    answ = 'y'
                except:
                    print '\n### warning'
                    answ = 'n'
            else:
                print '\n### select the std star'
                display_image(lista2[i], 1, '', '', False)
                iraf.image.tv.imexamine(lista2[i],
                                        1,
                                        logfile='tmpone.coo',
                                        keeplog='yes',
                                        xformat='',
                                        yformat='',
                                        wcs='logical')
                xycoo = iraf.proto.fields('tmpone.coo', '1,2', Stdout=1)
                x2, y2 = string.split(xycoo[0])
                f = open('tmpone.coo', 'w')
                f.write(str(x2) + ' ' + str(y2) + '\n')
                f.close()
                delete('pippo.' + str(j) + '.mag')
                print '###### new selection ' + str(x2), str(y2)
                gggg = iraf.digiphot.daophot.phot(lista2[i],
                                                  "tmpone.coo",
                                                  output='pippo.' + str(j) +
                                                  '.mag',
                                                  verify='no',
                                                  interac='no',
                                                  Stdout=1)
                try:
                    float(string.split(gggg[0])[3])
                    answ = 'y'
                except:
                    print '\n### warning'
                    answ = 'n'

    os.system('ls pippo.*.mag > tempmag.lst')
    tmptbl0 = iraf.txdump(textfile="@tempmag.lst",
                          fields="XCENTER,YCENTER,FLUX",
                          expr='yes',
                          Stdout=1)
    ff = open('magnitudini', 'w')
    for i in tmptbl0:
        ff.write(i + '\n')
    ff.close()
    #   delete the temporary images and files
    delete("temp*.fits")
    delete('temp*.lst')
    delete(illum_frame)
    print '\n### fitting the illumination surface...'
    aaa = iraf.utilities.surfit('magnitudini',
                                image=illum_frame,
                                function="polynomial",
                                xorder=2,
                                yorder=2,
                                xterms="full",
                                ncols=1024,
                                nlines=1024,
                                Stdout=1)
    iraf.noao.imred.generic.normalize(illum_frame)
    correctcard(lista[0])
    data, hdr = pyfits.getdata(illum_frame, 0, header=True)
    data0, hdr0 = pyfits.getdata(lista[0], 0, header=True)
    delete(illum_frame)
    pyfits.writeto(illum_frame, float32(data), hdr0)
    flatfield0 = string.split(flatfield, '/')[-1]
    ntt.util.updateheader(illum_frame, 0,
                          {'MKILLUM': [flatfield0, 'flat field']})
    display_image(illum_frame, 1, '', '', False)
    for i in range(0, len(lista)):  # in lista:
        img = lista[i]
        delete('pippo.' + str(i) + '.mag')
        delete('C' + img)
        delete('C' + re.sub('.fits', '_sky.fits', img))
#    delete('C*.fits.mag.1')
#    iraf.hedit(illum_frame,'MKILLUM','Illum. corr. created '+flatfield,add='yes',update='yes',verify='no')
    return illum_frame
コード例 #8
0
ファイル: soficalibdef.py プロジェクト: mnicholl/pessto
def makeflat(lista):
    # print "LOGX:: Entering `makeflat` method/function in %(__file__)s" %
    # globals()
    flat = ''
    import datetime
    import glob
    import os
    import ntt
    from ntt.util import readhdr, readkey3, delete, name_duplicate, updateheader, correctcard
    from pyraf import iraf
    iraf.images(_doprint=0, Stdout=0)
    iraf.imutil(_doprint=0, Stdout=0)
    iraf.imgeom(_doprint=0, Stdout=0)
    # iraf.blkavg(_doprint=0, Stdout=0)
    iraf.noao(_doprint=0, Stdout=0)
    iraf.imred(_doprint=0, Stdout=0)
    iraf.generic(_doprint=0, Stdout=0)
    toforget = [
        'imgeom.blkavg', 'imutil.imarith', 'immatch.imcombine', 'noao.imred'
    ]
    for t in toforget:
        iraf.unlearn(t)
    import datetime
    MJDtoday = 55927 + (datetime.date.today() -
                        datetime.date(2012, 01, 01)).days
    _date = readkey3(readhdr(lista[0]), 'date-night')
    _filter = readkey3(readhdr(lista[0]), 'filter')
    output = name_duplicate(
        lista[3],
        'flat_' + str(_date) + '_' + str(_filter) + '_' + str(MJDtoday), '')
    if os.path.isfile(output):
        answ = raw_input('file already prooduced, do again [y/[n]] ? ')
        if not answ:
            answ = 'n'
    else:
        answ = 'y'
    if answ in ['yes', 'y', 'YES', 'Y', 'Yes']:
        delete(
            "temp_off.fits,temp_off_mask.fits,temp_on_mask.fits,temp_on.fits")
        iraf.image.immatch.imcombine(lista[0] + ',' + lista[7],
                                     output="temp_off.fits")
        iraf.image.immatch.imcombine(lista[1] + ',' + lista[6],
                                     output="temp_off_mask.fits")
        iraf.image.immatch.imcombine(lista[2] + ',' + lista[5],
                                     output="temp_on_mask.fits")
        iraf.image.immatch.imcombine(lista[3] + ',' + lista[4],
                                     output="temp_on.fits")
        #   create the bias correction for the flat-on according to the
        #   Lidman technique0
        delete(
            "temp_onA.fits,temp_onC.fits,temp_onB.fits,temp_onAC.fits,temp_onACB.fits,temp_onACB_2D.fits"
        )
        delete("temp_on_bias.fits")
        iraf.imgeom.blkavg(input="temp_on.fits[500:600,*]",
                           output="temp_onA.fits",
                           option="average",
                           b1=101,
                           b2=1)
        iraf.imgeom.blkavg(input="temp_on_mask.fits[500:600,*]",
                           output="temp_onC.fits",
                           option="average",
                           b1=101,
                           b2=1)
        iraf.imgeom.blkavg(input="temp_on_mask.fits[50:150,*]",
                           output="temp_onB.fits",
                           option="average",
                           b1=101,
                           b2=1)
        iraf.imutil.imarith("temp_onA.fits", "-", "temp_onC.fits",
                            "temp_onAC.fits")
        iraf.imutil.imarith("temp_onAC.fits", "+", "temp_onB.fits",
                            "temp_onACB.fits")
        iraf.imgeom.blkrep(input="temp_onACB.fits",
                           output="temp_onACB_2D.fits",
                           b1=1024,
                           b2=1)
        iraf.imutil.imarith("temp_on.fits", "-", "temp_onACB_2D.fits",
                            "temp_on_bias.fits")
        #   same as above for the flat-off
        delete(
            "temp_offA.fits,temp_offC.fits,temp_offB.fits,temp_offAC.fits,temp_offACB.fits,temp_offACB_2D.fits"
        )
        delete("temp_off_bias.fits")
        iraf.imgeom.blkavg(input="temp_off.fits[500:600,*]",
                           output="temp_offA.fits",
                           option="average",
                           b1=101,
                           b2=1)
        iraf.imgeom.blkavg(input="temp_off_mask.fits[500:600,*]",
                           output="temp_offC.fits",
                           option="average",
                           b1=101,
                           b2=1)
        iraf.imgeom.blkavg(input="temp_off_mask.fits[50:150,*]",
                           output="temp_offB.fits",
                           option="average",
                           b1=101,
                           b2=1)
        iraf.imutil.imarith("temp_offA.fits", "-", "temp_offC.fits",
                            "temp_offAC.fits")
        iraf.imutil.imarith("temp_offAC.fits", "+", "temp_offB.fits",
                            "temp_offACB.fits")
        iraf.imgeom.blkrep(input="temp_offACB.fits",
                           output="temp_offACB_2D.fits",
                           b1=1024,
                           b2=1)
        iraf.imutil.imarith("temp_off.fits", "-", "temp_offACB_2D.fits",
                            "temp_off_bias.fits")
        #   create the corrected flat-field
        #    output=name_duplicate("temp_on_bias.fits",'flat_'+str(_date)+'_'+str(_filter)+'_'+str(MJDtoday),'')
        output = name_duplicate(
            lista[3],
            'flat_' + str(_date) + '_' + str(_filter) + '_' + str(MJDtoday),
            '')
        #    print lista[0],'flat_'+str(_date)+'_'+str(_filter)+'_'+str(MJDtoday)
        delete(output)
        iraf.imutil.imarith("temp_on_bias.fits", "-", "temp_off_bias.fits",
                            output)
        iraf.noao.imred.generic.normalize(output)  # normalize the flat-field
        correctcard(output)
        delete("temp_on*.fits")  # delete the temporary images
        delete("temp_off*.fits")
        print 'flat -> ' + str(output)
    else:
        print 'skip redoing the flat'
    return output
コード例 #9
0
ファイル: efosccalibdef.py プロジェクト: svalenti/pessto
def makefringingmask(listimg, _output, _interactive, _combine='average', _rejection='avsigclip'):
    # print "LOGX:: Entering `makefringingmask` method/function in
    # %(__file__)s" % globals()
    import ntt
    from ntt.util import readhdr, readkey3, delete, updateheader
    import glob
    import os
    import sys
    import re
    import string
    from pyraf import iraf
    iraf.noao(_doprint=0)
    iraf.immatch(_doprint=0)
    iraf.imutil(_doprint=0)
    iraf.nproto(_doprint=0)
    iraf.proto(_doprint=0)
    toforget = ['nproto.objmasks', 'proto.fixpix']
    for t in toforget:
        iraf.unlearn(t)

    if _interactive == True:
        listimg2 = []
        for img in listimg:
            _exptime = readkey3(readhdr(img), 'exptime')
            if float(_exptime) >= 10:
                answ = 'xxx'
                while answ.lower() not in ['y', 'n', 's', 'a']:
                    iraf.display(img, frame=1, fill='yes')
                    answ = raw_input(
                        'use this image (yes,no,stop (not more images),all) [[y]/n/s/a] ? ')
                    if not answ:
                        answ = 'y'
                    if answ.lower() == 'y':
                        listimg2.append(img)
                    elif answ.lower() == 'a':
                        listimg2 = listimg[:]
                if answ.lower() in ['a', 's']:
                    break
        listimg = listimg2[:]

    iraf.nproto.objmasks1.fitxord = 1
    iraf.nproto.objmasks1.fityord = 1
    hdr0 = readhdr(listimg[0])
    _date = readkey3(hdr0, 'date-obs')
    _filter = readkey3(hdr0, 'filter')
    _exptime = readkey3(hdr0, 'exptime')
    _instrume = readkey3(hdr0, 'instrume')
    _ron = readkey3(hdr0, 'ron')
    _gain = readkey3(hdr0, 'gain')
    badpixelmask = 'bad_pixel_mask.pl'
    if not os.path.isfile(badpixelmask):
        os.system('cp ' + ntt.__path__[0] + '/archive/' + _instrume +
                  '/badpixels/badpixel_20100210.pl ' + badpixelmask)
    ff = open('_listmask', 'w')
    hh = open('_listobgz', 'w')
    for img in listimg:
        _exptime = readkey3(readhdr(img), 'exptime')
        hh.write('z_' + img + '\n')
        ff.write('mask_' + img + '\n')
        delete('mask_' + img)
        aaa = iraf.hedit(img, delete='yes', field='OBJMASK',
                         up='yes', verify='no', Stdout=1)
        aaa = iraf.hedit(img, delete='yes', field='BPM',
                         up='yes', verify='no', Stdout=1)
        delete('z_' + img)
        iraf.imutil.imexpr(expr='(a - median(a))/' + str(_exptime),
                           a=img, output='z_' + img, verbose='no')
        ntt.util.updateheader('z_' + img, 0, {'EXPTIME': [1, '']})
    ff.close()
    hh.close()
    if not _output:
        _output = 'fringing_' + str(_date) + '_' + str(_filter) + '.fits'
    delete(_output)
    print ' making mask for each frame .......'
    ccc = iraf.nproto.objmasks(images='@_listobgz', objmasks='@_listmask', omtype='boolean',
                               blksize=-16, convolv='block 3 3', hsigma=5, lsigma=3, minpix=10, ngrow=2, agrow=4., Stdout=1)
    print 'combining all frames, masking the objects .....'
    iraf.imcombine('@_listobgz', output=_output, masktyp='!OBJMASK', maskval=0, combine=_combine, reject=_rejection,
                   scale='none', statsec='[100:800,100:800]', rdnoise='', gain='', nlow=1, nhigh=1, logfile='imcombinelog')

    ntt.util.phase3header(_output)
    ntt.util.updateheader(
        _output, 0, {'BUNIT': ['ADU', 'pixel units(ADU,electrons)']})
    ntt.util.updateheader(_output, 0, {'FILETYPE': [11231, 'fringing frame']})
    return _output
コード例 #10
0
ファイル: sofispec2Ddef.py プロジェクト: svalenti/pessto
def sofispecreduction(files, _interactive, _doflat, listflat, _docross, _verbose=False):
    # print "LOGX:: Entering `sofispecreduction` method/function in
    # %(__file__)s" % globals()
    import ntt
    from ntt.util import delete, readhdr, readkey3, correctcard, rangedata
    import string, re, sys, os, glob

    try:        
        from astropy.io import fits as pyfits
    except:     
        import pyfits

    from pyraf import iraf
    from numpy import argmin, array, min, isnan, arange, mean, sum
    from numpy import sqrt, pi

    iraf.noao(_doprint=0)
    iraf.imred(_doprint=0)
    iraf.ccdred(_doprint=0)
    iraf.twodspec(_doprint=0)
    iraf.longslit(_doprint=0)
    iraf.specred(_doprint=0)
    toforget = ['ccdred.flatcombine', 'ccdproc', 'specred.apall', 'longslit.identify', 'longslit.reidentify',
                'longslit.fitcoords', 'specred.transform', 'specred.response', 'imutil.hedit']
    for t in toforget:
        iraf.unlearn(t)
    iraf.longslit.dispaxi = 2
    iraf.longslit.mode = 'h'
    iraf.specred.dispaxi = 2
    iraf.specred.mode = 'h'
    iraf.ccdproc.darkcor = 'no'
    iraf.ccdproc.fixpix = 'no'
    iraf.ccdproc.flatcor = 'no'
    iraf.ccdproc.zerocor = 'no'
    iraf.ccdproc.overscan = 'no'
    iraf.ccdproc.ccdtype = ''
    iraf.ccdred.instrument = "/dev/null"

    iraf.set(direc=ntt.__path__[0] + '/')

    if _interactive:
        _interact = 'yes'
    else:
        _interact = 'no'
    if _verbose:
        iraf.ccdred.verbose = 'yes'
        iraf.specred.verbose = 'yes'
    else:
        iraf.specred.verbose = 'no'
        iraf.ccdred.verbose = 'no'
    import datetime
    import time

    now = datetime.datetime.now()
    datenow = now.strftime('20%y%m%d%H%M')
    MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days
    # if they are not sorted the fieldlist dict could crash
    files = ntt.sofiphotredudef.sortbyJD(files)
    outputlist = []
    setup = []
    fieldlist = {}
    OBID = {}
    RA = {}
    DEC = {}
    objects = {}
    flats = {}
    lamps1 = {}
    _rdnoise = readkey3(readhdr(re.sub('\n', '', files[0])), 'ron')
    _gain = readkey3(readhdr(re.sub('\n', '', files[0])), 'gain')
    for img in files:
        img = re.sub('\n', '', img)
        hdr = readhdr(img)
        _object = readkey3(hdr, 'object')
        _filter = readkey3(hdr, 'filter')
        _date = readkey3(hdr, 'date-night')
        _exptime = readkey3(hdr, 'exptime')
        _grism = readkey3(hdr, 'grism')
        _obsmode = readkey3(hdr, 'obsmode')
        _type = ''
        if _grism.lower() not in ['gr', 'gb']:
            _type = 'image'
        if not _type:
            if _object.lower() == 'flat':
                _type = 'flat'
                if _date not in flats:
                    flats[_date] = {}
                if _grism not in flats[_date]:
                    flats[_date][_grism] = [img]
                else:
                    flats[_date][_grism].append(img)
            elif _object.lower() == 'lamp':
                _lampid = (readkey3(hdr, 'esoid'), readkey3(hdr, 'grism'))
                if _lampid not in lamps1:
                    lamps1[_lampid] = [None, None]
                if readkey3(hdr, 'lamp1') == 'Xenon':
                    lamps1[_lampid][0] = img
                else:
                    lamps1[_lampid][1] = img
                _type = 'lamp'
                # if readkey3(hdr,'lamp1')=='Xenon':
            #                     _type='lamp'
            #                     if _grism not in lamps:
            #                         lamps[_grism]=[img]
            #                     else:
            #                         lamps[_grism].append(img)
            #                 else:
            #                     _type='notgood'
        if not _type:
            _ra = readkey3(hdr, 'RA')
            _dec = readkey3(hdr, 'DEC')
            _object_name = readkey3(hdr, 'object')
            _OBID = (readkey3(hdr, 'esoid'), _grism)
            if string.count(_object_name, '/') or string.count(_object_name, '.') or string.count(_object_name, ' '):
                nameobj = string.split(_object_name, '/')[0]
                nameobj = string.split(nameobj, ' ')[0]
                nameobj = string.split(nameobj, '.')[0]
            else:
                nameobj = _object_name
            if _grism not in fieldlist:
                fieldlist[_grism] = {}
            if _OBID not in OBID:
                count = 1
                nameobj0 = nameobj + '_' + str(count)
                answ = 'yes'
                while answ == 'yes':
                    if nameobj0 in fieldlist[_grism]:
                        count = count + 1
                        nameobj0 = nameobj + '_' + str(count)
                    else:
                        answ = 'no'
                fieldlist[_grism][nameobj0] = []
                OBID[readkey3(hdr, 'esoid'), _grism] = nameobj0
            fieldlist[_grism][nameobj0].append(img)

        if _verbose:
            print img
            print _type, _object, _filter
            print 'lamps', lamps1

    lamps = {}
    for _lampid in lamps1:
        lamp = ''
        output = 'arc_' + str(_lampid[0]) + '_' + str(_lampid[1]) + '.fits'
        if lamps1[_lampid][0] and lamps1[_lampid][1]:
            print lamps1[_lampid][0], lamps1[_lampid][1]
            # try:
            ntt.util.delete(output)
            iraf.imarith(lamps1[_lampid][0], '-', lamps1[_lampid]
                         [1], result=output, verbose='yes')
            #            except:
            #                print 'warning, lamp file not ON/OFF'
            #                os.system('cp '+lamps1[_lampid][0]+' '+output)

            lamp = output
        elif lamps1[_lampid][0] and not lamps1[_lampid][1]:
            os.system('cp ' + lamps1[_lampid][0] + ' ' + output)
            lamp = output
        if lamp:
            if _lampid[1] not in lamps:
                lamps[_lampid[1]] = [lamp]
            else:
                lamps[_lampid[1]].append(lamp)

    if _verbose:
        print '\n### FIELDS\n', fieldlist
        print '\n### OBID\n', OBID
        print '\n### FLATS\n', flats
        print '\n### LAMPS\n', lamps

#    if not flats:
#        sys.exit('\n### error: spectroscopic flat not available, add flats in the directory and try again')
#    if not lamps:
# sys.exit('\n### error: spectroscopic lamp not available, add lamps in
# the directory and try again')

    if not listflat:
        print '\n### list of available spectroscopic flats (ON,OFF):'
        for _date in flats:
            for _grism in flats[_date]:
                for img in flats[_date][_grism]:
                    if pyfits.open(img)[0].data.mean() >= 2000:
                        print img, _grism, _date, 'ON ? '
                    else:
                        print img, _grism, _date, 'OFF ? '
        for _date in flats:
            for _grism in flats[_date]:
                flat = {'ON': [], 'OFF': []}
                for img in flats[_date][_grism]:
                    _type = ''
                    if readkey3(hdr, 'lamp3'):
                        print '\n### header lamp3 found: flat ON ', str(img)
                        _type = 'ON'
                    else:
                        if pyfits.open(img)[0].data.mean() >= 2000:
                            _type = 'ON'
                        else:
                            _type = 'OFF'
                    aa, bb, cc = ntt.util.display_image(img, 1, '', '', False)
                    print '\n### number of flat already selected (ON,OFF): \n ### please select same number ' \
                          'of ON and OFF flats \n' + \
                        str(len(flat['ON'])) + '  ' + str(len(flat['OFF']))
                    print '\n### image ' + str(img)
                    answ = raw_input(
                        'ON/OFF/REJECT/STOP [' + str(_type) + ']  ok (ON[n]/OFF[f]/r/s) [' + _type + '] ? ')
                    if not answ:
                        answ = _type
                    if answ in ['ON', 'on', 'n']:
                        _type = 'ON'
                    if answ in ['OFF', 'off', 'f']:
                        _type = 'OFF'
                    if answ in ['s', 'S', 'STOP', 'stop', 'Stop']:
                        _type = 'stop'
                    if answ in ['r', 'R', 'reject']:
                        _type = 'r'
                    if _type in ['ON', 'OFF']:
                        flat[_type].append(img)
                    elif _type == 'stop':
                        if len(flat['ON']) == len(flat['OFF']) and len(flat['OFF']) >= 2:
                            break
                        elif len(flat['ON']) == len(flat['OFF']) and len(flat['OFF']) == 0:
                            break
                        else:
                            print '\n### Warning: you can stop only if the numbers of ON and OFF are the same'
                print len(flat['ON']), len(flat['OFF'])
                if len(flat['ON']) == len(flat['OFF']) and len(flat['OFF']) >= 2:
                    ff = open('_flatlist', 'w')
                    for ii in range(0, len(flat['OFF'])):
                        delete('flat_' + str(_date) + '_' + str(_grism) +
                               '_' + str(MJDtoday) + '_' + str(ii) + '.fits')
                        iraf.imarith(flat['ON'][ii], '-', flat['OFF'][ii],
                                     result='flat_' + str(_date) + '_' + str(_grism) + '_' + str(MJDtoday) + '_' + str(
                                         ii) + '.fits', verbose='no')
                        ff.write(
                            'flat_' + str(_date) + '_' + str(_grism) + '_' + str(MJDtoday) + '_' + str(ii) + '.fits\n')
                    ff.close()
                    masterflat = 'flat_' + \
                        str(_date) + '_' + str(_grism) + \
                        '_' + str(MJDtoday) + '.fits'
                    delete(masterflat)
                    _order = '80'
                    iraf.ccdred.flatcombine(input='@_flatlist', output=masterflat, combine='median', rdnoise=_rdnoise,
                                            gain=_gain, ccdtype='')
                    hdr = readhdr(masterflat)
                    matching = [s for s in hdr.keys() if "IMCMB" in s]
                    for imcmb in matching:
                        aaa = iraf.hedit(masterflat, imcmb, delete='yes', update='yes',
                                         verify='no', Stdout=1)
                    delete('_flatlist')
                    print masterflat
                    correctcard(masterflat)
                    if masterflat not in outputlist:
                        outputlist.append(masterflat)
                    ntt.util.updateheader(masterflat, 0, {'FILETYPE': [41102, 'flat field'],
                                                          'SINGLEXP': [False, 'TRUE if resulting from single exposure'],
                                                          'M_EPOCH': [False, 'TRUE if resulting from multiple epochs']})

                    print '\n###  master flat ........... done '
                    delete('n' + masterflat)
                    iraf.specred.response(masterflat, normaliz=masterflat + '[100:900,*]',
                                          response='n' + masterflat, interac=_interact, thresho='INDEF', sample='*',
                                          naverage=2,
                                          function='spline3', low_rej=3, high_rej=3, order=_order, niterat=20, grow=0,
                                          graphic='stdgraph', mode='q')
                    listflat.append('n' + masterflat)
                    if 'n' + masterflat not in outputlist:
                        outputlist.append('n' + masterflat)
                    ntt.util.updateheader('n' + masterflat, 0, {'FILETYPE': [41203, 'normalized flat field'],
                                                                'TRACE1': [masterflat, 'Originating file']})
                    # ntt.util.updateheader('n'+masterflat,0,{'TRACE1':[masterflat,'']})

                    flattot = flat['ON'] + flat['OFF']
                    num = 0
                    for img in flattot:
                        num = num + 1
                        ntt.util.updateheader(masterflat, 0, {
                            'PROV' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file'],
                            'TRACE' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                        ntt.util.updateheader('n' + masterflat, 0, {
                            'PROV' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})

                    if listflat:
                        print '\n### flat available:\n### ' + str(listflat), '\n'
                elif len(flat['ON']) == len(flat['OFF']) and len(flat['OFF']) == 0:
                    print '\n### no good flats in this set ......'
                else:
                    sys.exit('\n### Error: number of ON and OFF not the same')

    for _grism in fieldlist:
        obj0 = fieldlist[_grism][fieldlist[_grism].keys()[0]][0]
        # #############              arc              #########################
        if _grism not in lamps:
            print '\n### take arc from archive '
            arcfile = ntt.util.searcharc(obj0, '')[0]
            if arcfile[0] == '/':
                os.system('cp ' + arcfile + ' ' +
                          string.split(arcfile, '/')[-1])
                arcfile = string.split(arcfile, '/')[-1]
            lamps[_grism] = [arcfile]

        if _grism in lamps:
            arclist = lamps[_grism]
            if arclist:
                arcfile = ntt.util.searcharc(obj0, arclist)[0]
            else:
                arcfile = ntt.util.searcharc(obj0, '')[0]

            print arcfile
            if arcfile:
                print arcfile
                datea = readkey3(readhdr(arcfile), 'date-night')
                if arcfile[0] == '/':
                    os.system('cp ' + arcfile + ' ' +
                              string.split(arcfile, '/')[-1])
                    arcfile = string.split(arcfile, '/')[-1]

                if _doflat:
                    if listflat:
                        flat0 = ntt.util.searchflat(arcfile, listflat)[0]
                    else:
                        flat0 = ''
                else:
                    flat0 = ''

                if flat0:
                    _flatcor = 'yes'
                else:
                    _flatcor = 'no'
                    _doflat = False

                ntt.util.delete('arc_' + datea + '_' + _grism +
                                '_' + str(MJDtoday) + '.fits')

                print arcfile, flat0, _flatcor, _doflat

                if _doflat:
                    iraf.noao.imred.ccdred.ccdproc(arcfile,
                                                   output='arc_' + datea + '_' + _grism +
                                                   '_' +
                                                   str(MJDtoday) + '.fits',
                                                   overscan='no', trim='no', zerocor='no', flatcor=_flatcor, flat=flat0)
                else:
                    os.system('cp ' + arcfile + ' ' + 'arc_' + datea +
                              '_' + _grism + '_' + str(MJDtoday) + '.fits')

                iraf.noao.imred.ccdred.ccdproc('arc_' + datea + '_' + _grism + '_' + str(MJDtoday) + '.fits', output='',
                                               overscan='no', trim='yes', zerocor='no', flatcor='no', flat='',
                                               trimsec='[30:1000,1:1024]')

                arcfile = 'arc_' + datea + '_' + \
                    _grism + '_' + str(MJDtoday) + '.fits'

                ntt.util.correctcard(arcfile)
                print arcfile

                if arcfile not in outputlist:
                    outputlist.append(arcfile)

                ntt.util.updateheader(arcfile, 0, {'FILETYPE': [41104, 'pre-reduced 2D arc'],
                                                   'SINGLEXP': [True, 'TRUE if resulting from single exposure'],
                                                   'M_EPOCH': [False, 'TRUE if resulting from multiple epochs'],
                                                   'PROV1': [readkey3(readhdr(arcfile), 'ARCFILE'), 'Originating file'],
                                                   'TRACE1': [readkey3(readhdr(arcfile), 'ARCFILE'),
                                                              'Originating file']})

                arcref = ntt.util.searcharc(obj0, '')[0]
                if not arcref:
                    identific = iraf.longslit.identify(images=arcfile, section='column 10',
                                                       coordli='direc$standard/ident/Lines_XeAr_SOFI.dat', nsum=10,
                                                       fwidth=7, order=3, mode='h', Stdout=1, verbose='yes')
                else:
                    print arcref
                    os.system('cp ' + arcref + ' .')
                    arcref = string.split(arcref, '/')[-1]
                    if not os.path.isdir('database/'):
                        os.mkdir('database/')
                    if os.path.isfile(ntt.util.searcharc(obj0, '')[1] + '/database/id' + re.sub('.fits', '', arcref)):
                        os.system('cp ' + ntt.util.searcharc(obj0, '')[1] + '/database/id' + re.sub('.fits', '',
                                                                                                    arcref) + ' database/')

                    print arcref, arcfile
                    #                        time.sleep(5)
                    #                        os.system('rm -rf database/idarc_20130417_GR_56975')
                    #                        raw_input('ddd')
                    identific = iraf.longslit.reidentify(referenc=arcref, images=arcfile, interac='NO',  # _interact,
                                                         section='column 10', shift=0.0,
                                                         coordli='direc$standard/ident/Lines_XeAr_SOFI.dat',
                                                         overrid='yes', step=0, newaps='no', nsum=5, nlost=2,
                                                         mode='h', verbose='yes', Stdout=1)
                    #                        print identific
                    #                        raw_input('ddd')
                    identific = iraf.longslit.reidentify(referenc=arcref, images=arcfile, interac=_interact,
                                                         section='column 10', shift=1.0,
                                                         coordli='direc$standard/ident/Lines_XeAr_SOFI.dat',
                                                         overrid='yes', step=0, newaps='no', nsum=5, nlost=2,
                                                         mode='h', verbose='yes', Stdout=1)
                    #                        fitsfile = ntt.efoscspec2Ddef.continumsub('new3.fits', 6, 1)
                    # I need to run twice I don't know why
                    #                        print identific
                    #                        raw_input('ddd')
                    if _interactive:
                        answ = raw_input(
                            '\n### do you like the identification [[y]/n]')
                        if not answ:
                            answ = 'y'
                    else:
                        answ = 'y'
                    if answ in ['n', 'N', 'no', 'NO', 'No']:
                        yy1 = pyfits.open(arcref)[0].data[:, 10:20].mean(1)
                        xx1 = arange(len(yy1))
                        yy2 = pyfits.open(arcfile)[0].data[:, 10:20].mean(1)
                        xx2 = arange(len(yy2))

                        ntt.util.delete('_new3.fits')
                        hdu = pyfits.PrimaryHDU(yy1)
                        hdulist = pyfits.HDUList([hdu])
                        hdulist.writeto('_new3.fits')

                        fitsfile = ntt.efoscspec2Ddef.continumsub('_new3.fits', 4, 1)
                        yy1 = pyfits.open(fitsfile)[0].data

                        ntt.util.delete('_new3.fits')
                        hdu = pyfits.PrimaryHDU(yy2)
                        hdulist = pyfits.HDUList([hdu])
                        hdulist.writeto('_new3.fits')

                        fitsfile = ntt.efoscspec2Ddef.continumsub('_new3.fits', 4, 1)
                        yy2 = pyfits.open(fitsfile)[0].data

                        _shift = ntt.efoscspec2Ddef.checkwavelength_arc(
                            xx1, yy1, xx2, yy2, '', '') * (-1)

                        print arcref, arcfile, _shift
                        identific = iraf.longslit.reidentify(referenc=arcref, images=arcfile, interac='YES',
                                                             section='column 10', shift=_shift,
                                                             coordli='direc$standard/ident/Lines_XeAr_SOFI.dat',
                                                             overrid='yes', step=0, newaps='no', nsum=5, nlost=2,
                                                             mode='h', verbose='yes', Stdout=1)

                        answ = raw_input('\n### is it ok now ? [[y]/n] ')
                        if not answ:
                            answ = 'y'
                        if answ in ['n', 'N', 'no', 'NO', 'No']:
                            sys.exit(
                                '\n### Warning: line identification with some problems')
                iraf.longslit.reidentify(referenc=arcfile, images=arcfile, interac='NO', section='column 10',
                                         coordli='direc$standard/ident/Lines_XeAr_SOFI.dat', overrid='yes', step=10,
                                         newaps='yes', nsum=5, nlost=2, mode='h', verbose='no')
                iraf.longslit.fitcoords(images=re.sub('.fits', '', arcfile), fitname=re.sub('.fits', '', arcfile),
                                        interac='no', combine='yes', databas='database',
                                        function='legendre', yorder=4, logfile='', plotfil='', mode='h')
                if identific:
                    _rms = float(identific[-1].split()[-1])
                    _num = float(identific[-1].split()[2].split('/')[0])
                    hdr = ntt.util.readhdr(arcfile)
                    hedvec = {'LAMRMS': [_rms * .1, 'residual RMS [nm]'],
                              'LAMNLIN': [_num, 'Nb of arc lines used in the fit of the wavel. solution'],
                              'SPEC_ERR': [(_rms * .1) / sqrt(float(_num)), 'statistical uncertainty'],
                              'SPEC_SYE': [0.1, 'systematic error']}
                    ntt.util.updateheader(arcfile, 0, hedvec)
            else:
                sys.exit('Warning: arcfile not found')
        else:
            print 'here'
        # ########################################################################################################
        for field in fieldlist[_grism]:
            listaobj = fieldlist[_grism][field]
            listaobj = ntt.sofiphotredudef.sortbyJD(listaobj)
            listatemp = listaobj[:]
            # ##############             flat            ######################
            if listflat and _doflat:
                flat0 = ntt.util.searchflat(listaobj[0], listflat)[0]
            else:
                flat0 = ''
            if flat0:
                _flatcor = 'yes'
            else:
                _flatcor = 'no'

            ##########   crosstalk        ###########################

            listatemp2 = []
            _date = readkey3(readhdr(listatemp[0]), 'date-night')
            for img in listatemp:
                #                    num2=listatemp.index(listasub[j])
                imgout = field + '_' + str(_date) + '_' + str(_grism) + '_' + str(MJDtoday) + '_' + str(
                    listatemp.index(img)) + '.fits'
                print '\n### input image: ' + str(img)
                delete(imgout)
                listatemp2.append(imgout)
                if _docross:
                    print '### correct for cross talk   .....   done'
                    ntt.sofiphotredudef.crosstalk(img, imgout)
                    correctcard(imgout)
                    ntt.util.updateheader(
                        imgout, 0, {'CROSSTAL': ['True', '']})
                else:
                    os.system('cp ' + img + ' ' + imgout)
                    correctcard(imgout)
                if _flatcor == 'yes':
                    print '### correct for flat field   .....   done'
                    try:
                        iraf.noao.imred.ccdred.ccdproc(imgout, output='', overscan='no', trim='no', zerocor='no',
                                                       flatcor=_flatcor, flat=flat0)
                    except:
                        iraf.imutil.imreplace(
                            images=flat0, value=0.01, lower='INDEF', upper=0.01, radius=0)
                        iraf.noao.imred.ccdred.ccdproc(imgout, output='', overscan='no', trim='no', zerocor='no',
                                                       flatcor=_flatcor, flat=flat0)
                iraf.noao.imred.ccdred.ccdproc(imgout, output='', overscan='no', trim='yes', zerocor='no',
                                               flatcor='no', flat='', trimsec='[30:1000,1:1024]')
                ntt.util.updateheader(
                    imgout, 0, {'FLATCOR': [flat0, 'flat correction']})

                if imgout not in outputlist:
                    outputlist.append(imgout)
                ntt.util.updateheader(imgout, 0, {'FILETYPE': [42104, 'pre-reduced frame'],
                                                  'SINGLEXP': [True, 'TRUE if resulting from single exposure'],
                                                  'M_EPOCH': [False, 'TRUE if resulting from multiple epochs'],
                                                  'PROV1': [readkey3(readhdr(imgout), 'ARCFILE'), 'Originating file'],
                                                  'TRACE1': [readkey3(readhdr(imgout), 'ARCFILE'), 'Originating file']})
                print '### output image: ' + str(imgout)

            listatemp = listatemp2[:]
            #########    differences object images  #####################
            listasub = ntt.sofispec2Ddef.findsubimage(listatemp)
            reduced = []
            print '\n### Select Frames to be subtracted (eg A-B, B-A, C-D, D-C, ....) '
            print '###    frame1 \t  frame2  \t   offset1  \t   offset2  \t  JD1  \t    JD2\n'
            if len(listatemp) >= 2 and len(listasub) >= 2:
                for j in range(0, len(listatemp)):
                    print '### ', listatemp[j], listasub[j], str(readkey3(readhdr(listatemp[j]), 'xcum')), str(
                        readkey3(readhdr(listasub[j]), 'xcum')), \
                        str(readkey3(readhdr(listatemp[j]), 'JD')), str(
                            readkey3(readhdr(listatemp[j]), 'JD'))
                    if _interactive:
                        answ = raw_input('\n### ok [[y]/n] ? ')
                        if not answ:
                            answ = 'y'
                    else:
                        answ = 'y'
                    num1 = j
                    image1 = listatemp[j]
                    _date = readkey3(readhdr(image1), 'date-night')
                    if answ == 'y':
                        num2 = listatemp.index(listasub[j])
                        image2 = listasub[j]
                    else:
                        image2 = raw_input(
                            'which image do you want to subtract')
                        num2 = listatemp.index(image2)
                    imgoutsub = field + '_' + str(_date) + '_' + str(_grism) + '_' + str(MJDtoday) + '_' + str(
                        num1) + '_' + str(num2) + '.fits'
                    delete(imgoutsub)
                    iraf.images.imutil.imarith(
                        operand1=image1, op='-', operand2=image2, result=imgoutsub, verbose='no')
                    ntt.util.updateheader(imgoutsub, 0, {'skysub': [image2, 'sky image subtracted'],
                                                         'FILETYPE': [42115, 'pre-reduced frame sky subtracted'],
                                                         'TRACE1': [image1, 'Originating file'],
                                                         'PROV2': [readkey3(readhdr(image2), 'ARCFILE'),
                                                                   'Originating file'],
                                                         'TRACE2': [image2, 'Originating file']})

                    reduced.append(imgoutsub)
                    if imgoutsub not in outputlist:
                        outputlist.append(imgoutsub)
            ########################     2D wavelengh calibration      ########
            for img in reduced:
                if arcfile:
                    hdra = ntt.util.readhdr(arcfile)
                    delete('t' + img)
                    iraf.specred.transform(input=img, output='t' + img, minput='',
                                           fitnames=re.sub('.fits', '', arcfile), databas='database',
                                           x1='INDEF', x2='INDEF', y1='INDEF', y2='INDEF', flux='yes', mode='h',
                                           logfile='logfile')
                    ntt.util.updateheader('t' + img, 0,
                                          {'ARC': [arcfile, ''], 'FILETYPE': [42106, 'wavelength calibrate 2D frames'],
                                           'TRACE1': [img, 'Originating file']})
                    ntt.util.updateheader(
                        't' + img, 0, {'TRACE1': [img, 'Originating file']})
                    ntt.util.updateheader('t' + img, 0,
                                          {'LAMRMS': [ntt.util.readkey3(hdra, 'LAMRMS'), 'residual RMS [nm]'],
                                           'LAMNLIN': [ntt.util.readkey3(hdra, 'LAMNLIN'), 'number of arc lines'],
                                           'SPEC_ERR': [ntt.util.readkey3(hdra, 'SPEC_ERR'), 'statistical uncertainty'],
                                           'SPEC_SYE': [ntt.util.readkey3(hdra, 'SPEC_SYE'), 'systematic error']})
                    ###########################
                    delete('t' + arcfile)
                    iraf.specred.transform(input=arcfile, output='t' + arcfile, minput='',
                                           fitnames=re.sub('.fits', '', arcfile), databas='database',
                                           x1='INDEF', x2='INDEF', y1='INDEF', y2='INDEF', flux='yes', mode='h',
                                           logfile='logfile')
                    specred = ntt.util.spectraresolution2(arcfile, 50)
                    if specred:
                        ntt.util.updateheader(
                            't' + img, 0, {'SPEC_RES': [specred, 'Spectral resolving power']})
                    delete('t' + arcfile)
                    ###########################
                    iraf.hedit('t' + img, 'TRACE2', delete='yes',
                               update='yes', verify='no', Stdout=1)

                    if 't' + img not in outputlist:
                        outputlist.append('t' + img)
                    print '\n### 2D frame t' + str(img) + ' wavelengh calibrated  ............ done'

                    _skyfile = ntt.__path__[
                        0] + '/standard/ident/sky_' + _grism + '.fits'  # check in wavelengh   #########
                    hdr = ntt.util.readhdr(img)
                    if glob.glob(_skyfile) and readkey3(hdr, 'exptime') > 20.:
                        _original = readkey3(hdr, 'ORIGFILE')
                        _archive = readkey3(hdr, 'ARCFILE')
                        if os.path.isfile(_archive):
                            imgstart = _archive
                        elif os.path.isfile(_original):
                            imgstart = _original
                        else:
                            imgstart = ''
                        if imgstart:
                            delete('_tmp.fits')
                            print imgstart, arcfile
                            iraf.specred.transform(input=imgstart, output='_tmp.fits', minput='',
                                                   fitnames=re.sub('.fits', '', arcfile), databas='database',
                                                   x1='INDEF', x2='INDEF', y1='INDEF', y2='INDEF', flux='yes', mode='h',
                                                   logfile='logfile')

                            shift = ntt.sofispec2Ddef.skysofifrom2d('_tmp.fits', _skyfile)
                            zro = pyfits.open('_tmp.fits')[0].header.get('CRVAL2')

                            delete('_tmp.fits')
                            if _interactive:
                                answ = raw_input(
                                    'do you want to correct the wavelengh calibration with this shift: ' + str(
                                        shift) + ' [[y]/n] ? ')
                                if not answ:
                                    answ = 'y'
                            else:
                                answ = 'y'
                            if answ.lower() in ['y', 'yes']:
                                ntt.util.updateheader('t' + img, 0,
                                                      {'CRVAL2': [zro + int(shift), ''], 'shift': [float(shift), '']})
                            #                                    ntt.util.updateheader('t'+img,0,{'shift':[float(shift),'']})
                            print '\n### check wavelengh calibration with sky lines ..... done'
                    try:
                        hdrt = ntt.util.readhdr('t' + img)
                        wavelmin = float(readkey3(hdrt, 'CRVAL2')) + (0.5 - float(readkey3(hdrt, 'CRPIX2'))) * float(
                            readkey3(hdrt, 'CDELT2'))
                        wavelmax = float(readkey3(hdrt, 'CRVAL2')) + (
                            (float(readkey3(hdrt, 'NAXIS2')) + 0.5 - float(readkey3(hdrt, 'CRPIX2'))) * float(
                                readkey3(hdrt, 'CDELT2')))
                        hedvec = {}
                        hedvec['WAVELMIN'] = [
                            wavelmin * .1, '[nm] minimum wavelength']
                        hedvec['WAVELMAX'] = [
                            wavelmax * .1, ' [nm] maximum wavelength']
                        hedvec['XMIN'] = [wavelmin, '[A] minimum wavelength']
                        hedvec['XMAX'] = [wavelmax, '[A]  maximum wavelength']
                        hedvec['SPEC_BW'] = [
                            (wavelmax * .1) - (wavelmin * .1), '[nm] Bandpass Width Wmax - Wmin']
                        hedvec['SPEC_VAL'] = [
                            ((wavelmax * .1) + (wavelmin * .1)) / 2., '[nm] Mean Wavelength']
                        hedvec['SPEC_BIN'] = [
                            ((wavelmax * .1) - (wavelmin * .1)) /
                            (float(readkey3(hdr, 'NAXIS2')) - 1),
                            'Wavelength bin size [nm/pix]']
                        hedvec['VOCLASS'] = ['SPECTRUM V1.0', 'VO Data Model']
                        hedvec['VOPUB'] = ['ESO/SAF',
                                           'VO Publishing Authority']
                        #                            hedvec['APERTURE']=[float(re.sub('slit','',readkey3(hdrt,'slit'))),'aperture width']
                        ntt.util.updateheader('t' + img, 0, hedvec)
                    except:
                        pass
                else:
                    print '\n### Warning: arc not found for the image ' + str(img) + ' with setup ' + str(_grism)

    reduceddata = rangedata(outputlist)
    print '\n### adding keywords for phase 3 ....... '
    f = open('logfile_spec2d_' + str(reduceddata) +
             '_' + str(datenow) + '.raw.list', 'w')
    for img in outputlist:
        if img[-4:] == 'fits':
            hdr = readhdr(img)
            # ###############################################
            # cancel pc matrix
            if 'PC1_1' in hdr.keys():
                aaa = iraf.hedit(img, 'PC1_1', delete='yes',
                                 update='yes', verify='no', Stdout=1)
            if 'PC2_2' in hdr.keys():
                aaa = iraf.hedit(img, 'PC2_2', delete='yes',
                                 update='yes', verify='no', Stdout=1)
            if 'PC1_2' in hdr.keys():
                aaa = iraf.hedit(img, 'PC1_2', delete='yes',
                                 update='yes', verify='no', Stdout=1)
            if 'PC2_1' in hdr.keys():
                aaa = iraf.hedit(img, 'PC2_1', delete='yes',
                                 update='yes', verify='no', Stdout=1)
            #################
            # added for DR2
            print img

            if 'NCOMBINE' in hdr:
                _ncomb = readkey3(hdr, 'NCOMBINE')
            else:
                _ncomb = 1.0

            ntt.util.updateheader(
                img, 0, {'DETRON ': [12, 'Readout noise per output (e-)']})
            ntt.util.updateheader(img, 0, {'EFFRON': [12. * (1 / sqrt(readkey3(hdr, 'ndit') * _ncomb)) * sqrt(pi / 2),
                                                      'Effective readout noise per output (e-)']})
            ntt.util.phase3header(img)  # phase 3 definitions
            ############################
            #  change for DR2
            ############################
            texp = float(readkey3(hdr, 'dit')) * float(readkey3(hdr, 'ndit'))
            mjdend = float(readkey3(hdr, 'MJD-OBS')) + (float(readkey3(hdr, 'ndit')) * (
                float(readkey3(hdr, 'dit')) + 1.8)) / (60. * 60. * 24.)
            strtexp = time.strftime('%H:%M:%S', time.gmtime(texp))
            _telapse = (mjdend - float(readkey3(hdr, 'MJD-OBS'))) * \
                60. * 60 * 24.
            # tmid=_telapse/2.
            tmid = (mjdend + float(readkey3(hdr, 'MJD-OBS'))) / 2
            ntt.util.updateheader(img, 0, {'quality': ['Final', 'fast or rapid reduction'],
                                           'BUNIT': ['ADU', 'Physical unit of array values'],
                                           'DIT': [readkey3(hdr, 'dit'), 'Detector Integration Time'],
                                           'NDIT': [readkey3(hdr, 'ndit'), 'Number of sub-integrations'],
                                           'TEXPTIME': [texp, 'Total integration time of all exposures (s)'],
                                           'EXPTIME': [texp, 'Total integration time. ' + strtexp],
                                           'MJD-END': [mjdend, 'End of observations (days)'],
                                           'TELAPSE': [_telapse, 'Total elapsed time [days]'],
                                           'TMID': [tmid, '[d] MJD mid exposure'],
                                           'TITLE': [readkey3(hdr, 'object'), 'Dataset title'],
                                           #'TITLE':[str(tmid)[0:9]+' '+str(readkey3(hdr,'object'))+' '+str(readkey3(hdr,'grism'))+' '+\
                                           # str(readkey3(hdr,'filter'))+'
                                           # '+str(readkey3(hdr,'slit')),'Dataset
                                           # title'],\
                                           'EXT_OBJ': [False, 'TRUE if extended'],
                                           'CONTNORM': [False, 'spectrum normalized to the continuum'],
                                           'TOT_FLUX': [False, 'TRUE if phot cond and all src flux is captured'],
                                           'SPECSYS': ['TOPOCENT', 'Reference frame for spectral coordinate'],
                                           'FLUXCAL': ['ABSOLUTE', 'type of flux calibration'],
                                           'FLUXERR': [34.7, 'Fractional uncertainty of the flux [%]'],
                                           'DISPELEM': ['Gr#' + re.sub('Gr', '', readkey3(hdr, 'grism')),
                                                        'Dispersive element name']})
            if readkey3(hdr, 'tech'):
                ntt.util.updateheader(
                    img, 0, {'PRODCATG': ['SCIENCE.IMAGE', 'Data product category']})
            aaa = str(readkey3(hdr, 'arcfiles')) + '\n'
            f.write(aaa)
            try:
                ntt.util.airmass(img)  # phase 3 definitions
            except:
                print '\n### airmass not computed for image: ', img
        else:
            print img + ' is not a fits image'
    f.close()
    return outputlist, 'logfile_spec2d_' + str(reduceddata) + '_' + str(datenow) + '.raw.list'
コード例 #11
0
ファイル: efosccalibdef.py プロジェクト: mnicholl/pessto
def makefringingmask(listimg,
                     _output,
                     _interactive,
                     _combine='average',
                     _rejection='avsigclip'):
    # print "LOGX:: Entering `makefringingmask` method/function in
    # %(__file__)s" % globals()
    import ntt
    from ntt.util import readhdr, readkey3, delete, updateheader
    import glob
    import os
    import sys
    import re
    import string
    from pyraf import iraf
    iraf.noao(_doprint=0)
    iraf.immatch(_doprint=0)
    iraf.imutil(_doprint=0)
    iraf.nproto(_doprint=0)
    iraf.proto(_doprint=0)
    toforget = ['nproto.objmasks', 'proto.fixpix']
    for t in toforget:
        iraf.unlearn(t)

    if _interactive == True:
        listimg2 = []
        for img in listimg:
            _exptime = readkey3(readhdr(img), 'exptime')
            if float(_exptime) >= 10:
                answ = 'xxx'
                while answ.lower() not in ['y', 'n', 's', 'a']:
                    iraf.display(img, frame=1, fill='yes')
                    answ = raw_input(
                        'use this image (yes,no,stop (not more images),all) [[y]/n/s/a] ? '
                    )
                    if not answ:
                        answ = 'y'
                    if answ.lower() == 'y':
                        listimg2.append(img)
                    elif answ.lower() == 'a':
                        listimg2 = listimg[:]
                if answ.lower() in ['a', 's']:
                    break
        listimg = listimg2[:]

    iraf.nproto.objmasks1.fitxord = 1
    iraf.nproto.objmasks1.fityord = 1
    hdr0 = readhdr(listimg[0])
    _date = readkey3(hdr0, 'date-obs')
    _filter = readkey3(hdr0, 'filter')
    _exptime = readkey3(hdr0, 'exptime')
    _instrume = readkey3(hdr0, 'instrume')
    _ron = readkey3(hdr0, 'ron')
    _gain = readkey3(hdr0, 'gain')
    badpixelmask = 'bad_pixel_mask.pl'
    if not os.path.isfile(badpixelmask):
        os.system('cp ' + ntt.__path__[0] + '/archive/' + _instrume +
                  '/badpixels/badpixel_20100210.pl ' + badpixelmask)
    ff = open('_listmask', 'w')
    hh = open('_listobgz', 'w')
    for img in listimg:
        _exptime = readkey3(readhdr(img), 'exptime')
        hh.write('z_' + img + '\n')
        ff.write('mask_' + img + '\n')
        delete('mask_' + img)
        aaa = iraf.hedit(img,
                         delete='yes',
                         field='OBJMASK',
                         up='yes',
                         verify='no',
                         Stdout=1)
        aaa = iraf.hedit(img,
                         delete='yes',
                         field='BPM',
                         up='yes',
                         verify='no',
                         Stdout=1)
        delete('z_' + img)
        iraf.imutil.imexpr(expr='(a - median(a))/' + str(_exptime),
                           a=img,
                           output='z_' + img,
                           verbose='no')
        ntt.util.updateheader('z_' + img, 0, {'EXPTIME': [1, '']})
    ff.close()
    hh.close()
    if not _output:
        _output = 'fringing_' + str(_date) + '_' + str(_filter) + '.fits'
    delete(_output)
    print ' making mask for each frame .......'
    ccc = iraf.nproto.objmasks(images='@_listobgz',
                               objmasks='@_listmask',
                               omtype='boolean',
                               blksize=-16,
                               convolv='block 3 3',
                               hsigma=5,
                               lsigma=3,
                               minpix=10,
                               ngrow=2,
                               agrow=4.,
                               Stdout=1)
    print 'combining all frames, masking the objects .....'
    iraf.imcombine('@_listobgz',
                   output=_output,
                   masktyp='!OBJMASK',
                   maskval=0,
                   combine=_combine,
                   reject=_rejection,
                   scale='none',
                   statsec='[100:800,100:800]',
                   rdnoise='',
                   gain='',
                   nlow=1,
                   nhigh=1,
                   logfile='imcombinelog')

    ntt.util.phase3header(_output)
    ntt.util.updateheader(_output, 0,
                          {'BUNIT': ['ADU', 'pixel units(ADU,electrons)']})
    ntt.util.updateheader(_output, 0, {'FILETYPE': [11231, 'fringing frame']})
    return _output
コード例 #12
0
ファイル: efoscphotredudef.py プロジェクト: mnicholl/pessto
def fringing2(img, fmask, _interactive, _verbose=False):
    # print "LOGX:: Entering `fringing2` method/function in %(__file__)s" %
    # globals()
    from ntt.util import delete, display_image, updateheader, readhdr, readkey3
    from ntt.efoscphotredudef import searchfringe
    import datetime

    MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days
    import ntt
    import os
    import string
    import re
    from numpy import median, where
    from pyraf import iraf

    iraf.nproto(_doprint=0)
    iraf.unlearn('nproto.objmasks')
    if _verbose:
        ver = 'yes'
    else:
        ver = 'no'
    hdr = readhdr(img)
    _filter = readkey3(hdr, 'filter')
    _exptime = readkey3(hdr, 'exptime')
    _date = readkey3(hdr, 'date-night')
    imgout = img
    maskname = ''
    if not readkey3(hdr, 'FRICOR'):
        if fmask:
            fmask = searchfringe(img, fmask)[0]
        if fmask:
            print '###### use fringing mask from user ' + fmask
        else:
            fmask = searchfringe(img, '')[0]
            if fmask:
                print '###### use fringing mask from archive ' + fmask
        if fmask:
            imgout = re.sub('.fits', '_fr.fits', img)
            _trim = readkey3(hdr, 'TRIM')
            _trimmask = readkey3(readhdr(fmask), 'TRIM')
            maskname = 'fmask_' + str(_date) + '_' + \
                _filter + '_' + str(MJDtoday) + '.fits'
            delete(maskname)
            if _trim and not _trimmask:
                _trim = '[' + string.split(_trim, '[')[1]
                iraf.ccdred.ccdproc(fmask, output=maskname, overscan="no", trim="yes", zerocor="no",
                                    trimsec=_trim, flatcor="no", zero="", Stdout=1)
            elif _trim and _trimmask:
                if _trim == _trimmask:
                    os.system('cp ' + str(fmask) + ' ' + str(maskname))
                else:
                    sys.exit('ERROR: fringing correction can be applied only to UNTRIMMED images or '
                             'images with this trim ' + str(_trimmask))
            elif not _trim and _trimmask:
                sys.exit(
                    'ERROR: image is not trimmed while selected fringing mask is trimmed: ' + str(_trimmask))
            else:
                os.system('cp ' + str(fmask) + ' ' + str(maskname))

            iraf.nproto.objmasks1.fitxord = 1
            iraf.nproto.objmasks1.fityord = 1
            delete('mask_' + img)
            imgcut = re.sub('.fits', '', img)
            xxx = iraf.nproto.objmasks(images=imgcut, objmasks='mask_' + img, omtype='boolean',
                                       blksize=-16, convolv='block 3 3', hsigma=5, lsigma=3, minpix=10, ngrow=2,
                                       agrow=4., Stdout=1)
            matimg = pyfits.open(img)[0].data
            matmask = pyfits.open('mask_' + img)[1].data
            matfrin = pyfits.open(maskname)[0].data
            indices = where(matmask < 1)
            scalevalue = median(
                (matimg[indices] - median(matimg[indices])) / (matfrin[indices] - median(matfrin)))
            delete(imgout)
            iraf.imutil.imexpr(expr='a - (' + str(scalevalue) + '* (b - ' + str(median(matfrin)) + ') )', a=img,
                               b=maskname, output=imgout, verbose='no')
            print '\n### fringing correction  ..... done'
            iraf.hedit(images=imgout, fields='OBJMASK', value='',
                       delete='yes', update='yes', verify='no')
            ntt.util.updateheader(imgout, 0, {
                'FRICOR': [str(scalevalue) + ' * (' + str(maskname) + ' - ' + str(median(matfrin)) + ')', '']})
            ntt.util.updateheader(
                imgout, 0, {'FILETYPE': [12205, 'pre-reduced image fringing corrected']})
            ntt.util.updateheader(imgout, 0, {'PROV1': [readkey3(
                readhdr(imgout), 'ARCFILE'), 'Originating file']})
            ntt.util.updateheader(
                imgout, 0, {'TRACE1': [img, 'Originating file']})
            stringa = '%7.7s  * (fmask_%8s.fits - %5.5s )' % (
                str(scalevalue), _date, str(median(matfrin)))
        else:
            print '\n### fringing mask not available for this filter'
    else:
        print '\n### fringing correction already applyed to this image'
    return imgout, maskname
コード例 #13
0
ファイル: efoscphotredudef.py プロジェクト: mnicholl/pessto
def efoscreduction(imglist, _interactive, _doflat, _dobias, listflat, listbias, _dobadpixel, badpixelmask,
                   fringingmask, _archive, typefile, filenameobjects, _system, _cosmic, _verbose=False, method='iraf'):
    # print "LOGX:: Entering `efoscreduction` method/function in %(__file__)s"
    # % globals()
    import ntt
    from ntt.efoscphotredudef import searchbias
    from ntt.util import delete, readhdr, readkey3, display_image, searchflat, rangedata, correctcard
    from numpy import argmin, min, abs, sqrt
    import string
    import os
    import re
    import math
    import sys
    from pyraf import iraf
    # ##   Call and set parameters for useful iraf tasks
    iraf.noao(_doprint=0)
    iraf.imred(_doprint=0)
    iraf.ccdred(_doprint=0)
    iraf.proto(_doprint=0)

    toforget = ['ccdproc', 'zerocombine',
                'flatcombine', 'imreplace', 'proto.fixpix']
    for t in toforget:
        iraf.unlearn(t)

    iraf.ccdproc.darkcor = 'no'
    iraf.ccdproc.fixpix = 'no'
    iraf.ccdproc.flatcor = 'no'
    iraf.ccdproc.zerocor = 'no'
    iraf.ccdproc.overscan = 'no'
    iraf.ccdproc.ccdtype = ''
    iraf.ccdproc.biassec = ''
    iraf.ccdred.instrument = "/dev/null"

    if _verbose:
        iraf.ccdred.verbose = 'yes'
    else:
        iraf.ccdred.verbose = 'no'
    import datetime
    import time
    #      starttime=time.time()
    now = datetime.datetime.now()
    datenow = now.strftime('20%y%m%d%H%M')
    MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days
    outputfile = []
    reduceddata = rangedata(imglist)
    img = re.sub('\n', '', imglist[0])
    hdr = readhdr(img)
    _gain = readkey3(hdr, 'gain')
    _rdnoise = readkey3(hdr, 'ron')
    _instrume = readkey3(hdr, 'instrume')
    _trimsec = '[3:1010,1:1015]'
    biaslist = {}
    flatlist1 = {}
    flatlist2 = {}
    objectlist = {}
    filterlist1 = []
    filterlist2 = []
    for img in imglist:
        _type = ''
        img = re.sub('\n', '', img)
        hdr = readhdr(img)
        _naxis1 = readkey3(hdr, 'NAXIS1')
        _naxis2 = readkey3(hdr, 'NAXIS2')
        if _naxis1 != 1030 or _naxis2 != 1030:
            ntt.util.writeinthelog(
                'image ' + str(img) + ' different dimension =\n', './logNTT.txt')
            _type = 'not good'
        if not _type and readkey3(hdr, 'speed') != 'fastL':
            _type = 'not good'
        if not _type and readkey3(hdr, 'instrume') != 'efosc':
            _type = 'not good'
        _imagetype = readkey3(hdr, 'tech')
        if not _type and _imagetype == 'SPECTRUM':
            _type = 'spectroscopic data'
        if not _type:
            _exptime = readkey3(hdr, 'exptime')
            _date = readkey3(hdr, 'date-night')
            _filter = readkey3(hdr, 'filter')
            if float(_exptime) == 0.0:
                if _date not in biaslist:
                    biaslist[_date] = []
                biaslist[_date].append(img)
                _type = 'bias'
            if not _type:
                _object = readkey3(hdr, 'object')
                if _filter.lower() in ['g782', 'r784', 'z623', 'u640', 'b639', 'v641', 'r642',
                                       'i705'] and _imagetype == 'IMAGE':
                    if 'sky,flat' in _object.lower():
                        _type = 'flat'
                    elif 'dome' in _object.lower() or 'flat' in _object.lower():
                        _type = 'flat dome'
                    if _type == 'flat':
                        if _filter not in filterlist1:
                            filterlist1.append(_filter)
                            flatlist1[_filter] = []
                        flatlist1[_filter].append(img)
                    if _type == 'flat dome':
                        if _filter not in filterlist2:
                            filterlist2.append(_filter)
                            flatlist2[_filter] = []
                        flatlist2[_filter].append(img)
            if not _type:
                _catg = readkey3(hdr, 'catg')
                if 'science' in _catg.lower() or 'acquisition' in _catg.lower():
                    _type = 'object'
                    if _filter not in objectlist:
                        objectlist[_filter] = []
                    objectlist[_filter].append(img)
                    if 'acquisition' in _catg.lower():
                        try:
                            correctcard(img)
                            _ra1, _dec1, _name = ntt.util.correctobject(
                                img, 'standard_efosc_mab.txt')
                            _ra1, _dec1, _name = ntt.util.correctobject(
                                img, filenameobjects)
                        except:
                            pass

                elif 'focus' in _object.lower():
                    _type = 'not good'
            if not _type:
                print '\n### warning: object not recognized '
                _object = readkey3(hdr, 'object')
                print img, _object, _imagetype
                answ = raw_input(
                    'what is it: bias [1], flat [3], object[4], test [5] ?  [5] ')
                if not answ:
                    answ = '5'
                if answ == '1':
                    if _date not in biaslist:
                        biaslist[_date] = ()
                    biaslist[_date].append(img)
                elif answ == '4':
                    if _filter not in objectlist:
                        objectlist[_filter] = []
                    objectlist[_filter].append(img)
                elif answ == '3':
                    tt = raw_input('dome or sky [d/[s]] ? ')
                    if tt == 's':
                        _type = 'flat'
                        _filter = readkey3(hdr, 'filter')
                        if _filter not in filterlist1:
                            filterlist1.append(_filter)
                            flatlist1[_filter] = []
                        flatlist1[_filter].append(img)
                    elif tt == 'd':
                        _type = 'flat dome'
                        _filter = readkey3(hdr, 'filter')
                        if _filter not in filterlist2:
                            filterlist2.append(_filter)
                            flatlist2[_filter] = []
                        flatlist2[_filter].append(img)
                elif answ == '5':
                    _type = 'not good'

    filterlist = list(set(filterlist1 + filterlist2))
    if _verbose:
        print filterlist1
        print filterlist2
        print flatlist1
        print flatlist2
    flatlist = {}
    for _filt in filterlist:
        if _filt not in flatlist1.keys():
            if _filt in flatlist2.keys():
                if len(flatlist2[_filt]) >= 3:
                    flatlist[_filt] = flatlist2[_filt]
        elif len(flatlist1[_filt]) < 3:
            if _filt in flatlist2.keys():
                if len(flatlist2[_filt]) >= 3:
                    flatlist[_filt] = flatlist2[_filt]
        elif _filt in flatlist1.keys():
            if len(flatlist1[_filt]) >= 3:
                flatlist[_filt] = flatlist1[_filt]

    listaout = []
    if _verbose:
        print '\n### flat ', str(flatlist), '\n'
        print '\n### bias ', str(biaslist), '\n'
        print '\n### object ', str(objectlist), '\n'
        ###### masterbias  #################
    if _dobias:
        if not _archive:
            if listbias:
                masterbiaslist = listbias
            else:
                masterbiaslist = []
                if biaslist:
                    for _date in biaslist:
                        print '\n do bias ' + str(_date) + '\n'
                        biaslist[_date] = rejectbias(
                            biaslist[_date], False, 10)
                        if len(biaslist[_date]) >= 3:
                            masterbiasfile = 'bias_' + \
                                str(_date) + '_' + str(MJDtoday) + '.fits'
                            delete(masterbiasfile)
                            f = open('biaslist', 'w')
                            h = open('obiaslist', 'w')
                            for img in biaslist[_date]:
                                f.write(img + '\n')
                                h.write('o' + img + '\n')
                                delete('o' + img)
                            f.close()
                            h.close()
                            try:
                                print 'processing bias .....'
                                iraf.ccdproc('@biaslist', output='@obiaslist', overscan="no", trim="yes", zerocor='no',
                                             fixpix='no', ccdtype='', flatcor='no', darkcor='no', biassec='',
                                             trimsec=str(_trimsec), readaxi='column', Stdout=1)
                                iraf.zerocombine('@obiaslist', output=masterbiasfile, combine='median',
                                                 reject='ccdclip', ccdtype='', process='no',
                                                 rdnoise=_rdnoise, gain=_gain, Stdout=1)
                                correctcard(masterbiasfile)
                                num = 0
                                for img in biaslist[_date]:
                                    num = num + 1
                                    ntt.util.updateheader(masterbiasfile, 0, {
                                        'PROV' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                                    ntt.util.updateheader(masterbiasfile, 0, {
                                        'TRACE' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                                    delete('o' + img)
                                ntt.util.updateheader(masterbiasfile, 0,
                                                      {'M_EPOCH': [False, 'TRUE if resulting from multiple epochs']})
                                ntt.util.updateheader(masterbiasfile, 0,
                                                      {'SINGLEXP': [False, 'TRUE if resulting from single exposure']})
                                ntt.util.updateheader(masterbiasfile, 0, {
                                                      'FILETYPE': [11201, 'bias']})
                                masterbiaslist.append(masterbiasfile)

                                if masterbiasfile not in outputfile:
                                    outputfile.append(masterbiasfile)
                            except:
                                ntt.util.writeinthelog(
                                    'Warning ' +
                                    str(biaslist[_date]) +
                                    ' problem with this list of bias \n',
                                    './logNTT.txt')
                            if masterbiasfile and _interactive:
                                aa, bb, cc = display_image(
                                    masterbiasfile, 1, '', '', False)
                                answ = raw_input(
                                    'is the masterbias ok [[y]/n] ?')
                                if not answ:
                                    answ = 'y'
                                if answ in ['n', 'no']:
                                    sys.exit(
                                        'remove bad bias from input list and restart')
        else:
            masterbiaslist = []

    ########## masterflat   #########################

    if _doflat:
        if not _archive:
            if listflat:
                masterflatlist = listflat
            else:
                masterflatlist = []
                if flatlist:
                    for _filter in flatlist:
                        print '\n do flat ' + str(_filter) + '\n'
                        flatlist[_filter] = rejectflat(
                            flatlist[_filter], False)
                        if len(flatlist[_filter]) >= 3:
                            _date = readkey3(
                                readhdr(flatlist[_filter][0]), 'date-night')
                            masterflat = 'flat_' + \
                                str(_date) + '_' + str(_filter) + \
                                '_' + str(MJDtoday) + '.fits'
                            listaflat = 'flatlist_' + \
                                str(_date) + '_' + str(_filter)
                            _bias = ''
                            if masterbiaslist:
                                _bias = searchbias(flatlist[_filter][
                                                   0], masterbiaslist)[0]
                            if not _bias:
                                _bias = searchbias(flatlist[_filter][0], '')[0]
                            if _bias:
                                if _bias[0] == '/':
                                    os.system('cp ' + _bias + ' .')
                                    _bias = string.split(_bias, '/')[-1]
                                    _zerocor = 'yes'
                                else:
                                    _zerocor = 'yes'
                            else:
                                _zerocor = 'no'
                            answ0 = 'n'
                            while answ0 != 'y':
                                f = open(listaflat, 'w')
                                h = open('o' + listaflat, 'w')
                                for img in flatlist[_filter]:
                                    f.write(img + '\n')
                                    h.write('o' + img + '\n')
                                    delete('o' + img)
                                f.close()
                                h.close()
                                try:
                                    print 'processing flat .....'
                                    iraf.ccdproc('@' + listaflat, output='@o' + listaflat, overscan='no', trim='yes',
                                                 darkcor='no', fixpix='no',
                                                 zerocor=_zerocor, flatcor='no', trimsec=str(_trimsec), biassec='',
                                                 zero=_bias, readaxi='column', ccdtype='', Stdout=1)
                                    delete(masterflat)
                                    iraf.flatcombine('@o' + listaflat, output=masterflat, combine='average',
                                                     reject='avsigclip', ccdtype='', process='no',
                                                     rdnoise=_rdnoise, gain=_gain, statsec='[100:800,100:800]',
                                                     lsigma=3, hsigma=2, Stdout=1)
                                    masterflatlist.append(masterflat)
                                    correctcard(masterflat)
                                    num = 0
                                    for img in flatlist[_filter]:
                                        num = num + 1
                                        ntt.util.updateheader(masterflat, 0, {
                                            'PROV' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                                        ntt.util.updateheader(masterflat, 0, {
                                            'TRACE' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                                        delete('o' + img)
                                    ntt.util.updateheader(
                                        masterflat, 0, {'ZEROCOR': [_bias, '']})
                                    ntt.util.updateheader(masterflat, 0, {
                                        'M_EPOCH': [False, 'TRUE if resulting from multiple epochs']})
                                    ntt.util.updateheader(masterflat, 0, {
                                        'SINGLEXP': [False, 'TRUE if resulting from single exposure']})
                                    ntt.util.updateheader(
                                        masterflat, 0, {'FILETYPE': [11202, 'flat field']})

                                    if masterflat not in outputfile:
                                        outputfile.append(masterflat)
                                except:
                                    ntt.util.writeinthelog(
                                        'Warning ' +
                                        str(flatlist[
                                            _filter]) + ' problem with this list of flat \n',
                                        './logNTT.txt')
                                aa, bb, cc = display_image(
                                    masterflat, 1, '', '', False)
                                if masterflat and _interactive:
                                    answ = raw_input(
                                        'is the masterflat ok [[y]/n] ?')
                                    if not answ:
                                        answ = 'y'
                                    if answ.lower() in ['n', 'no']:
                                        answ1 = raw_input(
                                            'try again [[y]/n] ?')
                                        if not answ1:
                                            answ1 = 'y'
                                        if answ1.lower() in ['y', 'yes']:
                                            flatlist[_filter] = ntt.efoscphotredudef.rejectflat(
                                                flatlist[_filter], True)
                                        else:
                                            sys.exit(
                                                'error: problem with flat .... exit')
                                    else:
                                        answ0 = 'y'
                                else:
                                    answ0 = 'y'
        else:
            masterflatlist = []
    ##########################################################################
    if len(masterbiaslist) == 0:
        masterbiaslist = ''
    if len(masterflatlist) == 0:
        masterflatlist = ''
    ######################################
    if _verbose:
        print ''
        print '#############################'
        print masterflatlist
        print masterbiaslist
        print '#############################'
        print ''
    if masterflatlist:
        listaout = listaout + masterflatlist
    if masterbiaslist:
        listaout = listaout + masterbiaslist
    if typefile == 'calib':
        objectlist = {}
    for _filter in objectlist:
        for img in objectlist[_filter]:
            hdr = readhdr(img)
            print '\n#####################################################################\n'
            _object = readkey3(hdr, 'object')
            _object = re.sub(' ', '', _object)
            _object = re.sub('/', '_', _object)
            _object = re.sub('\n', '', _object)
            _exptime = readkey3(hdr, 'exptime')
            _date = readkey3(hdr, 'date-night')
            nameout = ntt.util.name_duplicate(img, str(_object) + '_' + str(_date) + '_' + str(_filter) + '_' + str(
                MJDtoday), '')
            _bias = ''
            if _dobias:
                if masterbiaslist:
                    _bias = searchbias(img, masterbiaslist)[0]
                if not _bias:
                    _bias = searchbias(img, '')[0]
            _flat = ''
            if _doflat:
                if masterflatlist:
                    _flat = searchflat(img, masterflatlist)[0]
                if not _flat:
                    _flat = searchflat(img, '')[0]
                if _bias:  # bias  ###
                    if _bias[0] == '/':
                        os.system('cp ' + _bias + ' .')
                        _bias = string.split(_bias, '/')[-1]
                    _zerocor = 'yes'
                else:
                    _zerocor = 'no'
            else:
                _zerocor = 'no'

            if _flat:  # flat  ###
                if _flat[0] == '/':
                    os.system('cp ' + _flat + ' .')
                    _flat = string.split(_flat, '/')[-1]
                _flatcor = 'yes'
            else:
                _flatcor = 'no'
            sss = str(_object) + '_' + str(_date) + '_' + str(_filter)
            print '### input', img, sss
            print '### bias ', _zerocor, _bias
            print '### flat ', _flatcor, _flat
            print '### name ', nameout
            delete(nameout)
            try:
                iraf.ccdproc(img, output=nameout, overscan="no", trim="yes", zerocor=_zerocor, flatcor='no',
                             darkcor='no', trimsec=str(_trimsec), zero=_bias, biassec='', readaxi='column', Stdout=1)
                try:
                    iraf.ccdproc(nameout, output='', overscan="no", trim="no", zerocor='no', flatcor=_flatcor,
                                 darkcor='no', flat=_flat, readaxi='column', ccdtype='', Stdout=1)
                except:
                    iraf.imrepla(images=_flat, value=0.01,
                                 lower='INDEF', upper=0.01, radius=0)
                    iraf.ccdproc(nameout, output='', overscan="no", trim="no", zerocor='no', flatcor=_flatcor,
                                 darkcor='no', flat=_flat, readaxi='column', ccdtype='', Stdout=1)
                correctcard(nameout)
                ntt.util.updateheader(nameout, 0, {'FILTER': [readkey3(readhdr(nameout), 'filter'), 'Filter name'],
                                                   'SINGLEXP': [True, 'TRUE if resulting from single exposure'],
                                                   'M_EPOCH': [False, 'TRUE if resulting from multiple epochs'],
                                                   'FLATCOR': [_flat, ''],
                                                   'ZEROCOR': [_bias, ''], 'FILETYPE': [12204, 'pre-reduced image'],
                                                   'PROV1': [readkey3(readhdr(nameout), 'ARCFILE'), 'Originating file'],
                                                   'NCOMBINE': [1, 'Number of raw science data'],
                                                   'TRACE1': [readkey3(readhdr(nameout), 'ARCFILE'),
                                                              'Originating file']})
                ntt.util.airmass(nameout)  # phase 3 definitions

                ntt.util.writeinthelog('\n', './logNTT.txt')
                ntt.util.writeinthelog(
                    'image= ' + str(img) + ' output= ' + str(nameout) + '\n', './logNTT.txt')
                ntt.util.writeinthelog(
                    'bias= ' + str(_bias) + ', flat= ' + str(_flat) + '\n', './logNTT.txt')
                ntt.util.writeinthelog('\n', './logNTT.txt')
                if nameout not in outputfile:
                    outputfile.append(nameout)
            except:
                ntt.util.writeinthelog(
                    'image ' + str(img) + ' probably corrupted\n', './logNTT.txt')
            if _dobadpixel:
                if not badpixelmask:
                    badpixelmask = 'bad_pixel_mask.fits'
                    delete(badpixelmask)
                    os.system('cp ' + ntt.__path__[0] + '/archive/' + str(
                        _instrume) + '/badpixels/badpixel.fits ' + badpixelmask)
                iraf.proto.fixpix(images=nameout, masks=badpixelmask,
                                  linterp='INDEF', cinterp='INDEF', verbose='no')
                ntt.util.updateheader(
                    nameout, 0, {'FIXPIX': [badpixelmask, '']})
                ntt.util.writeinthelog('image ' + str(nameout) + ' bad pixel corrected with ' + badpixelmask + '\n',
                                       './logNTT.txt')
                print '\n### bad pixel mask correction ..... done'
            else:
                ntt.util.writeinthelog(
                    'image ' + str(nameout) + ' bad pixel NOT corrected\n', './logNTT.txt')
            if _cosmic:
                try:
                    print '\n### cosmic  ..... '
                    ntt.cosmics.lacos_im(nameout, _output='', gain=_gain, readn=_rdnoise, xorder=9, yorder=9,
                                         sigclip=4.5, sigfrac=0.5, objlim=1, skyval=0, niter=0, verbose=True,
                                         interactive=False)
                    ntt.util.updateheader(nameout, 0, {
                        'LACOSMIC': [True, 'TRUE if Laplacian cosmic ray rejection has been applied to the image']})
                    print '\n### cosmic  .....  removed '
                except Exception, e:
                    print e
            else:
                ntt.util.updateheader(nameout, 0, {
                    'LACOSMIC': [False, 'TRUE if Laplacian cosmic ray rejection has been applied to the image']})
            try:
                ##########################
                sexvec = ntt.efoscastrodef.sextractor(nameout)
                for cat in ['2mass', 'usnoa2', 'usnob1']:
                    rmsx3, rmsy3, num3, fwhmgess, ellgess, ccc, rasys3, decsys3, magsat3 = ntt.efoscastrodef.efoscastroloop(
                        [nameout], cat, False, 40, 40, 100, 'rxyscale', 100, 30, sexvec, True, 10, method)
                    if rmsx3 <= 2 and rmsy3 <= 2:
                        break
                if rmsx3 > 2 and rmsy3 > 2:
                    for cat in ['2mass', 'usnoa2', 'usnob1']:
                        rmsx3, rmsy3, num3, fwhmgess, ellgess, ccc, rasys3, decsys3, magsat3 = ntt.efoscastrodef.efoscastroloop(
                            [nameout], cat, False, 20, int(20), int(50), 'rxyscale', 100, 30, sexvec, True, 5, method)
                        if rmsx3 <= 2 and rmsy3 <= 2:
                            break
                    if rmsx3 > 2 and rmsy3 > 2:
                        for cat in ['2mass', 'usnoa2', 'usnob1']:
                            rmsx3, rmsy3, num3, fwhmgess, ellgess, ccc, rasys3, decsys3, magsat3 = ntt.efoscastrodef.efoscastroloop(
                                [nameout], cat, False, int(10), int(10),
                                int(25), 'rxyscale', 100, 30, sexvec, True, int(3), method)
                        ##########################
                astrostring = str(rmsx3) + ' ' + str(rmsy3) + ' ' + str(num3)
                ntt.util.updateheader(
                    nameout, 0, {'ASTROMET': [astrostring, 'rmsx rmsy nstars']})
                print '\n### check astrometry: fine \n### rmsx rmsy nstars: ' + astrostring
            except Exception, e:
                print e
                rmsx3, rmsy3, num3, fwhmgess, ellgess, ccc, rasys3, decsys3, magsat3 = '', '', '', '', '', '', '', '', ''
                print '\n### problem with astrometry, do you have network ? '
            if fwhmgess and fwhmgess < 99:
                ntt.util.updateheader(nameout, 0, {'PSF_FWHM': [fwhmgess, 'Spatial resolution (arcsec)'],
                                                   'ELLIPTIC': [ellgess, 'Average ellipticity of point sources'],
                                                   'CRDER1': [(1 / sqrt(2.)) * float(rmsx3) * (1. / 3600.),
                                                              'Random error (degree)'],
                                                   'CRDER2': [(1 / sqrt(2.)) * float(rmsy3) * (1. / 3600.),
                                                              'Random error (degree)'],
                                                   'CUNIT1': ['deg', 'unit of the coord. trans.'],
                                                   'CUNIT2': ['deg', 'unit of the coord. trans.'],
                                                   'CSYER1': [rasys3, 'Systematic error (RA_m - Ra_ref)'],
                                                   'CSYER2': [decsys3, 'Systematic error (DEC_m - DEC_ref)']})
            else:
                ntt.util.updateheader(nameout, 0, {'PSF_FWHM': [9999., 'FHWM (arcsec) - computed with sectractor'],
                                                   'ELLIPTIC': [9999., 'ellipticity of point sources (1-b/a)'],
                                                   'CRDER1': [9999., 'Random error in axis 1'],
                                                   'CRDER2': [9999., 'Random error in axis 2'],
                                                   'CUNIT1': ['deg', 'unit of the coord. trans.'],
                                                   'CUNIT2': ['deg', 'unit of the coord. trans.'],
                                                   'CSYER1': [9999., 'Systematic error (RA_m - Ra_ref)'],
                                                   'CSYER2': [9999., 'Systematic error (DEC_m - DEC_ref)']})

            try:
                result = ntt.efoscastrodef.zeropoint(
                    nameout, _system, method, False, False)
            except:
                result = ''
            if result:
                if os.path.isfile(re.sub('.fits', '.ph', nameout)):
                    if re.sub('.fits', '.ph', nameout) not in outputfile:
                        outputfile.append(
                            re.sub('.fits', '.ph', nameout))
                print '\n### zeropoint ..... done'
                for ll in result:
                    valore = '%3.3s %6.6s %6.6s' % (
                        str(ll), str(result[ll][1]), str(result[ll][0]))
                    print '### ', valore
                    ntt.util.updateheader(
                        nameout, 0, {'zp' + ll: [str(valore), '']})
            if magsat3:
                if readkey3(readhdr(nameout), 'FLUXCAL') == 'ABSOLUTE':
                    try:
                        ntt.util.updateheader(nameout, 0, {
                            'ABMAGSAT': [float(magsat3) + float(readkey3(readhdr(nameout)), 'PHOTZP'),
                                         'Saturation limit for point sources (AB mags)']})
                    except:
                        ntt.util.updateheader(nameout, 0, {
                            'ABMAGSAT': [float(magsat3), 'Saturation limit for point sources (AB mags)']})
                else:
                    ntt.util.updateheader(nameout, 0, {
                        'ABMAGSAT': [float(magsat3), 'Saturation limit for point sources (AB mags)']})
            else:
                ntt.util.updateheader(nameout, 0, {'ABMAGSAT': [
                                      9999., 'Saturation limit for point sources (AB mags)']})

            maglim = ntt.util.limmag(nameout)
            if maglim:
                ntt.util.updateheader(nameout, 0,
                                      {'ABMAGLIM': [maglim, '5-sigma limiting AB magnitude for point sources']})
            else:
                ntt.util.updateheader(nameout, 0,
                                      {'ABMAGLIM': [9999., '5-sigma limiting AB magnitude for point sources']})

            if readkey3(readhdr(nameout), 'filter') in ['i705']:
                try:
                    nameout, maskname = ntt.efoscphotredudef.fringing2(
                        nameout, fringingmask, _interactive, False)
                    if nameout not in outputfile:
                        outputfile.append(nameout)
                        if maskname not in outputfile:
                            outputfile.append(maskname)

                except:
                    ntt.util.writeinthelog(
                        'image ' + str(nameout) + ' probably corrupted\n', './logNTT.txt')
                    print '\n### problem with fringing correction'