コード例 #1
0
    def roll_features(self, feats, xy, jitter_scale=32):
        """Rolls an individual set of feature maps in-place."""
        xy = xy * jitter_scale

        for layer, feat in feats.items():
            scale, _ = self.layer_info(layer)
            roll2(feat, xy // scale)

        return feats
コード例 #2
0
 def roll(self, xy):
     """Rolls the optimizer's internal state."""
     if (xy == 0).all():
         return
     self.xy += xy
     if self.grad is not None:
         self.grad[:] = roll2(self.grad, xy)
     for s, y in zip(self.sk, self.yk):
         s[:] = roll2(s, xy)
         y[:] = roll2(y, xy)
コード例 #3
0
    def preprocess_images(self,
                          pool,
                          content_images,
                          style_images,
                          content_layers,
                          style_layers,
                          tile_size=512,
                          roll=None):
        """Performs preprocessing tasks on the input images."""
        # Construct list of layers to visit during the backward pass
        layers = []
        for layer in reversed(self.layers()):
            if layer in content_layers or layer in style_layers:
                layers.append(layer)

        # Prepare Gram matrices from style images
        if roll is None:
            print_('Preprocessing the style image(s)...')
        for image in style_images:
            grams = {}
            self.set_image(image)
            roll2(self.img, roll)
            feats = self.prepare_features(pool,
                                          style_layers,
                                          tile_size,
                                          passes=1)
            for layer in feats:
                grams[layer] = gram_matrix(feats[layer])
            self.styles.append(StyleData(grams))

        # Prepare feature maps from content image
        if roll is None:
            print_('Preprocessing the content image(s)...')
            n = 10
        else:
            n = 1
        for image in content_images:
            self.set_image(image)
            roll2(self.img, roll)
            feats = self.prepare_features(pool,
                                          content_layers,
                                          tile_size,
                                          passes=n)
            self.contents.append(ContentData(feats))
コード例 #4
0
ファイル: optimizers.py プロジェクト: ai4art/style_transfer
 def roll(self, xy):
     """Rolls the optimizer's internal state."""
     if (xy == 0).all():
         return
     self.xy += xy
     roll2(self.g1.value, xy)
     roll2(self.g2.value, xy)
     roll2(self.p1.value, xy)
コード例 #5
0
 def roll(self, xy):
     """Rolls the optimizer's internal state."""
     if (xy == 0).all():
         return
     self.xy += xy
     roll2(self.g1.value, xy)
     roll2(self.g2.value, xy)
     roll2(self.p1.value, xy)
コード例 #6
0
 def roll(self, xy):
     """Rolls the optimizer's internal state."""
     if (xy == 0).all():
         return
     self.xy += xy
     if self.grad is not None:
         roll2(self.grad, xy)
     for s, y in zip(self.sk, self.yk):
         roll2(s, xy)
         roll2(y, xy)
コード例 #7
0
ファイル: optimizers.py プロジェクト: ai4art/style_transfer
    def update(self, opfunc):
        """Returns a step's parameter update given a loss/gradient evaluation function."""
        # Step size decay
        step_size = self.step_size / self.i**self.power
        self.i += self.decay

        loss, grad = opfunc(self.params)

        # Adam
        self.g1.update(grad)
        self.g2.update(grad**2)
        step = self.g1.get() / (np.sqrt(self.g2.get()) + EPS)
        saxpy(-step_size, step, self.params)

        # Iterate averaging
        self.p1.update(self.params)
        return roll2(self.p1.get(), -self.xy), loss
コード例 #8
0
    def update(self, opfunc):
        """Returns a step's parameter update given a loss/gradient evaluation function."""
        # Step size decay
        step_size = self.step_size / self.i**self.power
        self.i += self.decay

        loss, grad = opfunc(self.params)

        # Adam
        self.g1.update(grad)
        self.g2.update(grad**2)
        step = self.g1.get() / (np.sqrt(self.g2.get()) + EPS)
        axpy(-step_size, step, self.params)

        # Iterate averaging
        self.p1.update(self.params)
        return roll2(self.p1.get(), -self.xy), loss
コード例 #9
0
 def roll(self, xy, jitter_scale=32):
     """Rolls the image, feature maps."""
     for content in self.contents:
         self.roll_features(content.features, xy, jitter_scale)
     roll2(self.img, xy * jitter_scale)
コード例 #10
0
    def preprocess_images(self,
                          pool,
                          content_images,
                          style_images,
                          content_layers,
                          style_layers,
                          tile_size=512,
                          roll=None):
        """Performs preprocessing tasks on the input images."""
        # Construct list of layers to visit during the backward pass
        layers = []
        for layer in reversed(self.layers()):
            if layer in content_layers or layer in style_layers:
                layers.append(layer)

        # Prepare Gram matrices from style images
        if roll is None:
            print('Preprocessing the style image(s)...')

        sizes = [None]
        if ARGS.style_multiscale:
            vmin, vmax = ARGS.style_multiscale
            size = vmax
            sizes = [vmax]
            while True:
                size = int(round(size / np.sqrt(2)))
                if size < max(32, vmin):
                    break
                sizes.append(size)

        if not self.styles:
            grams = {}
            count = 0
            for i, image in enumerate(style_images):
                scale_too_big_cond = False
                for size in reversed(sizes):
                    if scale_too_big_cond:
                        break
                    if size:
                        image_scaled = resize_to_fit(image, size)
                        if max(image_scaled.size) == max(image.size):
                            scale_too_big_cond = True
                        if min(image_scaled.size) < 32:
                            continue
                        self.set_image(image_scaled)
                        h, w = image_scaled.size
                        print('Processing style {} at {}x{}.'.format(
                            i + 1, h, w))
                    else:
                        self.set_image(image)
                    roll2(self.img, roll)
                    feats = self.prepare_features(pool,
                                                  style_layers,
                                                  tile_size,
                                                  passes=1)
                    for layer in feats:
                        gram = gram_matrix(feats[layer])
                        if layer not in grams:
                            grams[layer] = gram
                        else:
                            grams[layer] += gram
                    count += 1
            for gram in grams.values():
                gram /= count
            self.styles.append(StyleData(grams))

        # Prepare feature maps from content image
        if roll is None:
            print('Preprocessing the content image(s)...')
            n = 10
        else:
            n = 1
        for image in content_images:
            self.set_image(image)
            roll2(self.img, roll)
            feats = self.prepare_features(pool,
                                          content_layers,
                                          tile_size,
                                          passes=n)
            self.contents.append(ContentData(feats))