コード例 #1
0
ファイル: SoundInfo.py プロジェクト: guaka/py-audio-analysis
def calculate_spectrogram(input_array,
						  framesize,
						  hopsize,
						  window_function = numarray.linear_algebra.mlab.hanning,
						  keep_bands_until = 0,
						  axis = 0):
	"""Calculate the spectrogram."""

	do_fft = lambda arr: abs(numarray.fft.real_fft(arr, axis = axis))[:keep_bands_until]
	
	keep_bands_until = keep_bands_until or int(framesize / 2)
	input_shape = map(None, numarray.shape(input_array))

	window = window_function(framesize)
	if len(input_shape) > 1:
		window = transpose(array([list(window)] * input_shape[1]))
		
	# print "input_shape:", shape(input_array)
	zeros_shape = input_shape  # this allows for both 1 and 2 dim inputs
	zeros_shape[0] = framesize / 2
	input_array_plus_zeros = numarray.concatenate((numarray.zeros(zeros_shape), input_array, numarray.zeros(zeros_shape)))
	fft_range = range(0, len(input_array) - framesize, hopsize)

	fft_array = numarray.zeros(([len(fft_range)] + 
								map(None, numarray.shape(do_fft(window)))),
							   # do_fft(window) is used here because it gives the right shape
							   numarray.Float32) * 1.0  # this *1.0 is necessary!
	for result_counter, input_counter in enumerate(fft_range):
		frame = window * input_array_plus_zeros[input_counter : input_counter + framesize]
		fft_array[result_counter] = 10 * numarray.log10(0.1 + do_fft(frame))

	return fft_array
コード例 #2
0
ファイル: fitsio.py プロジェクト: fxia22/ASM_xf
def read_data(filename, hdu = -1, verbose=0):
#####################################################################
# Reads and return a NumPy array containing the data in extension   #
# hdu.                                                              #
#####################################################################
    if verbose: print "Opening ",filename,
    p = pcfitsio.fits_open_file(filename,0)
    if verbose: print ". Done."
    if hdu!=-1:
	pcfitsio.fits_movabs_hdu(p,hdu)
    if verbose: print "Reading image size.",
    n = pcfitsio.fits_read_keys_lng(p,"NAXIS",1,10)
    if verbose: print n,"Done."
    if n==[] or n==[0]:
	pcfitsio.fits_close_file(p)
	raise KeyError," Could not read NAXIS values"
    if verbose: print "Reading data.",
    data = 0
    l = []
    for i in range(len(n)):
	l.append(n[len(n)-i-1])
    data = pcfitsio.fits_read_img(p,1,numarray.multiply.reduce(l) ,0.)[0]
    if verbose: print "Data read ok.",numarray.shape(data),numarray.multiply.reduce(l)
    if verbose: print "Reshape ",l
	
    data=numarray.reshape(data,l)
    if verbose: print "Reshape ",l," ok."
    if verbose: print "Read",n,"=",numarray.multiply.reduce(n),"elements.",
    if verbose: print "Done."
    if verbose: print "Closing",filename,
    pcfitsio.fits_close_file(p)
    if verbose: print ".Done."
    return data
コード例 #3
0
def fig3b(t, m, w, p):
    """ Plot image of age,metallicity weights -- nearest neighbor interpolation"""
    NREP = 50
    xi = pylab.linspace(0.1, 15, 512)
    yi = pylab.linspace(-2.5, 0.9, 512)
    z = numarray.zeros((len(xi), len(yi)),
                       numarray.Float)  # create t, metallicity array
    y = numarray.repeat(m, NREP)
    dt = t[1] - t[0]
    x = numarray.arange(t[0], t[-1] + 2 * dt, dt / NREP)
    x = x[0:len(y)]
    x = 10.**x / 1.e9
    weight = numarray.repeat(w, NREP)
    # Find the indices in the array
    xindex = numarray.searchsorted(xi, x)
    print "shape(x), shape(y), shape(weight)", numarray.shape(
        x), numarray.shape(y), numarray.shape(weight)
    if p.sigma > 0:
        if p.dsigmadlogt == 0.:
            for i in range(len(y)):
                nstars = weight[i] * normgauss(yi, y[i], p.sigma)
                j = xindex[i]
                z[j, :] += nstars
        if p.dsigmadlogt != 0.:
            for i in range(len(y)):
                logt0 = numarray.log10(x[0])
                logt = numarray.log10(x[i])
                sigma = p.sigma + p.dsigmadlogt * (logt - logt0)
                nstars = weight[i] * normgauss(yi, y[i], sigma)
                j = xindex[i]
                z[j, :] += nstars
    else:
        sigma = 0.01
        for i in range(len(y)):
            nstars = weight[i] * normgauss(yi, y[i], sigma)
            j = xindex[i]
            z[j, :] += nstars


#       yindex = numarray.searchsorted(yi,y)
#       z[xindex,yindex] = z[xindex,yindex] + weight # increment the 2-d array
    zz = numarray.transpose(z)
    pylab.imshow(zz, extent=[0.1, 15, -2.5, 0.9], aspect='auto')
    pylab.xlabel("Age (Gyr)")
    pylab.ylabel("[Fe/H]")
    return xi, yi, zz
コード例 #4
0
ファイル: plotsmooth.py プロジェクト: certik/chemev
def fig3b(t,m,w,p):
    """ Plot image of age,metallicity weights -- nearest neighbor interpolation"""
    NREP = 50
    xi = pylab.linspace(0.1,15,512)
    yi = pylab.linspace(-2.5,0.9,512)
    z = numarray.zeros((len(xi),len(yi)),numarray.Float) # create t, metallicity array
    y = numarray.repeat(m,NREP)
    dt = t[1]-t[0]
    x = numarray.arange(t[0],t[-1]+2*dt,dt/NREP)
    x = x[0:len(y)]
    x = 10.**x/1.e9
    weight = numarray.repeat(w,NREP)
    # Find the indices in the array
    xindex = numarray.searchsorted(xi,x)
    print "shape(x), shape(y), shape(weight)", numarray.shape(x),numarray.shape(y), numarray.shape(weight)
    if p.sigma > 0:
        if p.dsigmadlogt == 0.:
            for i in range(len(y)):
                nstars = weight[i]*normgauss(yi,y[i],p.sigma)
                j = xindex[i]
                z[j,:] += nstars
        if p.dsigmadlogt != 0.:
            for i in range(len(y)):
                logt0 = numarray.log10(x[0])
                logt = numarray.log10(x[i])
                sigma = p.sigma + p.dsigmadlogt*(logt-logt0)
                nstars = weight[i]*normgauss(yi,y[i],sigma)
                j = xindex[i]
                z[j,:] += nstars
    else:
        sigma = 0.01
        for i in range(len(y)):
            nstars = weight[i]*normgauss(yi,y[i],sigma)
            j = xindex[i]
            z[j,:] += nstars
#       yindex = numarray.searchsorted(yi,y)
#       z[xindex,yindex] = z[xindex,yindex] + weight # increment the 2-d array
    zz = numarray.transpose(z)
    pylab.imshow(zz,extent=[0.1,15,-2.5,0.9],aspect='auto')
    pylab.xlabel("Age (Gyr)")
    pylab.ylabel("[Fe/H]")
    return xi,yi,zz
コード例 #5
0
def decode_mixture(P, entropy_cutoff):
    """ Given P, a (|sequences| x |models|)-matrix where P_{ij} =
    P[model j| sequence i] return a list of size (|sequences|)
    which contains j, the model which maximizes  P[model j| sequence i]
    for a sequence, if the entropy of the discrete distribution
    { P[ . | sequence i] } is less than the entropy_cutoff and None else.
    """
    nr_seqs = numarray.shape(P)[0]
    result = [None] * nr_seqs
    for i in xrange(nr_seqs):
        e = Entropy(P[i])
        #print e, P[i]
        if e < entropy_cutoff:
            result[i] = int(numarray.argmax(P[i]))
    return result
コード例 #6
0
ファイル: mixture.py プロジェクト: T-R0D/Past-Courses
def decode_mixture(P, entropy_cutoff):
    """ Given P, a (|sequences| x |models|)-matrix where P_{ij} =
    P[model j| sequence i] return a list of size (|sequences|)
    which contains j, the model which maximizes  P[model j| sequence i]
    for a sequence, if the entropy of the discrete distribution
    { P[ . | sequence i] } is less than the entropy_cutoff and None else.
    """
    nr_seqs = numarray.shape(P)[0]
    result = [None] * nr_seqs
    for i in xrange(nr_seqs):
        e = Entropy(P[i])
        #print e, P[i]
        if e < entropy_cutoff:
            result[i] = int(numarray.argmax(P[i]))
    return result
コード例 #7
0
ファイル: plotsmooth.py プロジェクト: certik/chemev
def fig3e(t,m,w,p):
    """ Plot image of log(age),metallicity weights -- nearest neighbor interpolation"""
    xi = pylab.linspace(8,10.25,512)
    yi = pylab.linspace(-2.5,0.9,512)
    z = numarray.zeros((len(xi),len(yi)),numarray.Float) # create t, metallicity array
    x = t
    y = m
    # Find the indices in the array
    xindex = numarray.searchsorted(xi,x)
    if p.sigma > 0:
        for i in range(len(y)):
            nstars = w[i]*normgauss(yi,y[i],p.sigma)
            print "shape(z),len(nstars)", numarray.shape(z), len(nstars)
            z[xindex[i],:] += nstars
    else:
        yindex = numarray.searchsorted(yi,y)
        z[xindex,yindex] = z[xindex,yindex] + weight # increment the 2-d array
    zz = numarray.transpose(z)
    pylab.imshow(zz,extent=[8,10.25,-2.5,0.9],aspect='auto')
コード例 #8
0
def plot_PCA_residuals(data, D=None, newfig=True, marker='o'):
    if D is None:
        D = shape(data)[1]
    p=doPCA(data, D, D)
    spec=zeros((D,1),Float)
    for i in range(1,D):
        spec[i] = norm(p.d[:i])
    res = transpose(sqrt(spec[-1]**2-spec**2)/spec[-1])[0]
    print "2-norm of PCA spectrum =", spec[-1]
    if newfig:
        figure()
        style='k'+marker
    else:
        style=marker
    semilogy(res,style)
##    title('PCA residuals')
    xlabel(r'$\rm{Dimension}$',fontsize=20)
    ylabel(r'$\rm{PCA \ residual}$',fontsize=20)
    return p, res
コード例 #9
0
def plot_PCA_residuals(data, D=None, newfig=True, marker='o'):
    if D is None:
        D = shape(data)[1]
    p = doPCA(data, D, D)
    spec = zeros((D, 1), Float)
    for i in range(1, D):
        spec[i] = norm(p.d[:i])
    res = transpose(sqrt(spec[-1]**2 - spec**2) / spec[-1])[0]
    print "2-norm of PCA spectrum =", spec[-1]
    if newfig:
        figure()
        style = 'k' + marker
    else:
        style = marker
    semilogy(res, style)
    ##    title('PCA residuals')
    xlabel(r'$\rm{Dimension}$', fontsize=20)
    ylabel(r'$\rm{PCA \ residual}$', fontsize=20)
    return p, res
コード例 #10
0
def fig3e(t, m, w, p):
    """ Plot image of log(age),metallicity weights -- nearest neighbor interpolation"""
    xi = pylab.linspace(8, 10.25, 512)
    yi = pylab.linspace(-2.5, 0.9, 512)
    z = numarray.zeros((len(xi), len(yi)),
                       numarray.Float)  # create t, metallicity array
    x = t
    y = m
    # Find the indices in the array
    xindex = numarray.searchsorted(xi, x)
    if p.sigma > 0:
        for i in range(len(y)):
            nstars = w[i] * normgauss(yi, y[i], p.sigma)
            print "shape(z),len(nstars)", numarray.shape(z), len(nstars)
            z[xindex[i], :] += nstars
    else:
        yindex = numarray.searchsorted(yi, y)
        z[xindex,
          yindex] = z[xindex, yindex] + weight  # increment the 2-d array
    zz = numarray.transpose(z)
    pylab.imshow(zz, extent=[8, 10.25, -2.5, 0.9], aspect='auto')
コード例 #11
0
ファイル: __init__.py プロジェクト: fxia22/ASM_xf
 def _rc(self, a):
     if len(shape(a)) == 0:
         return a
     else:
         return Matrix(a)
コード例 #12
0
ファイル: __init__.py プロジェクト: joshfermin/AI
 def _rc(self, a):
     if len(shape(a)) == 0:
         return a
     else:
         return Matrix(a)
コード例 #13
0
    def write_to_hdf_old_style(self, hdffile, where, name, title, complib=None, complevel=None):
        accu_group=hdffile.createGroup(where=where,name=name,title=title)
        accu_group._v_attrs.damaris_type="Accumulation"
        if self.contains_data():
            self.lock.acquire()
            try:
                # save time stamps
                if self.time_period is not None and len(self.time_period)>0:
                    accu_group._v_attrs.earliest_time="%04d%02d%02d %02d:%02d:%02d.%03d"%(self.time_period[0].year,
                                                                                          self.time_period[0].month,
                                                                                          self.time_period[0].day,
                                                                                          self.time_period[0].hour,
                                                                                          self.time_period[0].minute,
                                                                                          self.time_period[0].second,
                                                                                          self.time_period[0].microsecond/1000)
                    accu_group._v_attrs.oldest_time="%04d%02d%02d %02d:%02d:%02d.%03d"%(self.time_period[1].year,
                                                                                        self.time_period[1].month,
                                                                                        self.time_period[1].day,
                                                                                        self.time_period[1].hour,
                                                                                        self.time_period[1].minute,
                                                                                        self.time_period[1].second,
                                                                                        self.time_period[1].microsecond/1000)
                if self.common_descriptions is not None:
                    for (key,value) in self.common_descriptions.iteritems():
                        accu_group._v_attrs.__setattr__("description_"+key,str(value))
                # save channel data
                for channel_no in xrange(len(self.y)):
                    y_mean=self.get_ydata(channel_no)
                    y_sigma=self.get_yerr(channel_no)
                    for index_no in xrange(len(self.index)):
                        index=self.index[index_no]
                        # set time data
                        timedata=numarray.array(type = numarray.Float64,
                                                shape = (2*(index[1]-index[0]+1),))
                            
                        timedata[0::2]=y_mean[index[0]:index[1]+1]
                        if len(y_sigma):
                            timedata[1::2]=y_sigma[index[0]:index[1]+1]
                        else:
                            timedata[1::2]=numarray.zeros(type = numarray.Float64,
                                                          shape = ((index[1]-index[0]+1),))
                        timedata.setshape((index[1]-index[0]+1,2))
                        time_slice_data=None
                        if complib is not None:
                            if complevel is None:
                                complevel=9
                            chunkshape = numarray.shape(timedata)
			    if len(chunkshape) <= 1:
				chunkshape = (min(chunkshape[0],1024*8),)
			    else:
				chunkshape = (min(chunkshape[0],1024*8), chunkshape[1])
                            time_slice_data=hdffile.createCArray(accu_group,
                                                                 name="idx%04d_ch%04d"%(index_no,channel_no),
                                                                 shape=timedata.getshape(),
                                                                 atom=tables.Float64Atom(shape=chunkshape,
                                                                                         flavor="numarray"),
                                                                 filters=tables.Filters(complevel=complevel,
                                                                                        complib=complib,
											shuffle=1),
                                                                 title="Index %d, Channel %d"%(index_no,channel_no))
                            time_slice_data[:]=timedata
                        else:
                            time_slice_data=hdffile.createArray(accu_group,
                                                                name="idx%04d_ch%04d"%(index_no,channel_no),
                                                                object=timedata,
                                                                title="Index %d, Channel %d"%(index_no,channel_no))

                        timedata=None
                        # set attributes
                        time_slice_data._f_setAttr("index",numarray.array(index_no, type=numarray.Int32))
                        time_slice_data._f_setAttr("channel",numarray.array(channel_no, type=numarray.Int32))
                        time_slice_data._f_setAttr("number",numarray.array(self.n, type=numarray.Int64))
                        time_slice_data._f_setAttr("dwelltime",numarray.array(1.0/self.sampling_rate,
                                                                               type=numarray.Float64))
                        time_slice_data._f_setAttr("start_time",numarray.array(1.0/self.sampling_rate*index[0],
                                                                                type=numarray.Float64))
            finally:
                time_slice_data=None
                accu_group=None
                self.lock.release()
コード例 #14
0
def whiten(data):
    wdata=zeros(shape(data),Float)
    for d in range(shape(data)[1]):
        x = data[:,d]
        wdata[:,d] = (x-mean(x))/std(x)
    return wdata
コード例 #15
0
ファイル: fitsio.py プロジェクト: fxia22/ASM_xf
def write_data(filename, data, bitpix = -1, hdu = -1, append=0, verbose=0):
#############################################################################
# Write an array, or a list, to the file filename                           #
# The type of the array determines the value of bitpix, which can be        #
# overwritten if necessary. Data will be written to the extension           #
# indicated by the parameter hdu=. If that extension does not exist but the #
# parameter appen= is set to 1, then a new hdu is appended to the data      #
# Setting verbose=1 turns on the verbose mode                               #
#############################################################################
     import posixpath


     if type(filename) != type(" "): raise InvalidFilename
     try:
	 data = numarray.asarray(data)
#	 data = numarray.transpose(data)
	 naxes = numarray.asarray(numarray.shape(data)).tolist()
	 l = []
	 for i in range(len(naxes)):
	     l.append(naxes[len(naxes)-i-1])
	 naxes=l
     except:
	 raise InvalidData
     if bitpix == -1:
	 if data.typecode()=='l':
	     bitpix = 32
	 if data.typecode()=='d':
	     bitpix = -32
     if not (bitpix in [-32,8,16,32]):
	 print "Invalid BITPIX: ",bitpix
	 return
     ok = 0
     new = 1
     if (posixpath.isfile(filename)):
	 p = pcfitsio.fits_open_file(filename,1)
	 ok = 1
	 new = 0
	 if hdu != -1:
	     try:
		 if verbose: print "Trying to move to extension #"+`hdu`
		 pcfitsio.fits_movabs_hdu(p,hdu)
		 append = 0
		 ok = 1
	     except:
		 if verbose: print "Failed to move to extension #"+`hdu`
	 if append:
	     # Create a new image extension
	     if verbose: print "Appending an image  extension.",
	     pcfitsio.fits_create_img(p,bitpix,naxes)
	     if verbose: print "Done.",
	     # Find out the number of extensions
	 #    hdunum = pcfitsio.fits_get_num_hdus(p)
	 #    if verbose: print "Total #hdu:",hdunum
	 #    pcfitsio.fits_movabs_hdu(p,hdunum)
	     ok = 1
     else:
	 if verbose: print "File not found."
	 if verbose: print "Creating:",filename,
	 p = pcfitsio.fits_create_file(filename)
	 new = 1
	 if verbose: print "Done."

	 if verbose: print "Appending an image  extension.",
	 pcfitsio.fits_create_img(p,bitpix,naxes)
	 pcfitsio.fits_close_file(p)
	 p = pcfitsio.fits_open_file(filename,1)
	 if verbose: print "Done.",
	 # Find out the number of extensions
	 hdunum = pcfitsio.fits_get_num_hdus(p)
	 if verbose: print "Total #hdu:",hdunum
	 pcfitsio.fits_movabs_hdu(p,hdunum)
	 ok = 1
     # Write the data to the file which is now opened/created
     if ok:
	 if new == 0:
	     if verbose: print "Resizing img ext..",
	     pcfitsio.fits_resize_img(p,bitpix,naxes)
	 if verbose: print "Writing data.",naxes,
	 if verbose: print numarray.multiply.reduce(naxes)
	 pcfitsio.fits_write_img(p,1,numarray.multiply.reduce(naxes),data)
	 if verbose: print "Done."

	 if verbose: print "Closing",filename,
	 pcfitsio.fits_close_file(p)
	 if verbose: print "Done."
コード例 #16
0
    def write_to_hdf_old_style(self, hdffile, where, name, title, complib=None, complevel=None):
        accu_group=hdffile.createGroup(where=where,name=name,title=title)
        accu_group._v_attrs.damaris_type="ADC_result"
        if self.contains_data():
            self.lock.acquire()
            try:
                # save time stamps
                if "job_date" in dir(self) and self.job_date is not None:
                    accu_group._v_attrs.time="%04d%02d%02d %02d:%02d:%02d.%03d"%(self.job_date.year,
                                                                                 self.job_date.month,
                                                                                 self.job_date.day,
                                                                                 self.job_date.hour,
                                                                                 self.job_date.minute,
                                                                                 self.job_date.second,
                                                                                 self.job_date.microsecond/1000)

                if self.description is not None:
                    for (key,value) in self.description.iteritems():
                        accu_group._v_attrs.__setattr__("description_"+key,str(value))
                # save channel data
                for channel_no in xrange(len(self.y)):
                    y_mean=self.get_ydata(channel_no)
                    for index_no in xrange(len(self.index)):
                        index=self.index[index_no]
                        # set time data
                        timedata=numarray.array(y_mean[index[0]:index[1]+1],
                                                type = numarray.Int32)
                        
                        time_slice_data=None
                        if complib is not None:
                            if complevel is None:
                                complevel=9
                            chunkshape = numarray.shape(timedata)
			    if len(chunkshape) <= 1:
				chunkshape = (min(chunkshape[0],1024*8),)
			    else:
				chunkshape = (min(chunkshape[0],1024*8), chunkshape[1])
                            time_slice_data=hdffile.createCArray(accu_group,
                                                                 name="idx%04d_ch%04d"%(index_no,channel_no),
                                                                 shape=timedata.getshape(),
                                                                 atom=tables.Int32Atom(shape=chunkshape,
                                                                                       flavor="numarray"),
                                                                 filters=tables.Filters(complevel=complevel,
                                                                                        complib=complib),
                                                                 title="Index %d, Channel %d"%(index_no,channel_no))
                            time_slice_data[:]=timedata
                        else:
                            time_slice_data=hdffile.createArray(accu_group,
                                                                name="idx%04d_ch%04d"%(index_no,channel_no),
                                                                object=timedata,
                                                                title="Index %d, Channel %d"%(index_no,channel_no))

                        timedata=None
                        # set attributes
                        time_slice_data._f_setAttr("index",numarray.array(index_no, type=numarray.Int32))
                        time_slice_data._f_setAttr("channel",numarray.array(channel_no, type=numarray.Int32))
                        time_slice_data._f_setAttr("dwelltime",numarray.array(1.0/self.sampling_rate,
                                                                               type=numarray.Float64))
                        time_slice_data._f_setAttr("start_time",numarray.array(1.0/self.sampling_rate*index[0],
                                                                                type=numarray.Float64))
            finally:
                time_slice_data=None
                accu_group=None
                self.lock.release()
コード例 #17
0
def whiten(data):
    wdata = zeros(shape(data), Float)
    for d in range(shape(data)[1]):
        x = data[:, d]
        wdata[:, d] = (x - mean(x)) / std(x)
    return wdata
コード例 #18
0
    def write_to_hdf_new_style(self, hdffile, where, name, title, complib=None, complevel=None):
        accu_group=hdffile.createGroup(where=where,name=name,title=title)
        accu_group._v_attrs.damaris_type="ADC_result"
        if self.contains_data():
            self.lock.acquire()
            try:
                # save time stamps
                if "job_date" in dir(self) and self.job_date is not None:
                    accu_group._v_attrs.time="%04d%02d%02d %02d:%02d:%02d.%03d"%(self.job_date.year,
                                                                                 self.job_date.month,
                                                                                 self.job_date.day,
                                                                                 self.job_date.hour,
                                                                                 self.job_date.minute,
                                                                                 self.job_date.second,
                                                                                 self.job_date.microsecond/1000)

                if self.description is not None:
                    for (key,value) in self.description.iteritems():
                        accu_group._v_attrs.__setattr__("description_"+key,str(value))

                # save interval information
                filter=None
                if complib is not None:
                    if complevel is None:
                        complevel=9
                    filter=tables.Filters(complevel=complevel,complib=complib,shuffle=1)

                index_table=hdffile.createTable(where=accu_group,
                                                name="indices",
                                                description={"start": tables.UInt64Col(),
                                                             "length": tables.UInt64Col(),
                                                             "start_time": tables.Float64Col(),
                                                             "dwelltime": tables.Float64Col()},
                                                title="indices of adc data intervals",
                                                filters=filter,
                                                expectedrows=len(self.index))

                # save channel data
                new_row=index_table.row
                for i in xrange(len(self.index)):
                    new_row["start"]=self.index[i][0]
                    new_row["dwelltime"]=1.0/self.sampling_rate
                    new_row["start_time"]=1.0/self.sampling_rate*self.index[i][0]
                    new_row["length"]=self.index[i][1]-self.index[i][0]+1
                    new_row.append()

                index_table.flush()
                new_row=None
                index_table=None

                # prepare saving data
                channel_no=len(self.y)
                timedata=numarray.array(shape = (len(self.y[0]),channel_no),
                                        type = numarray.Int32)
                for ch in xrange(channel_no):
                    timedata[:,ch]=self.get_ydata(ch)
                
                # save data
                time_slice_data=None
                if filter is not None:
                    chunkshape = numarray.shape(timedata)
                    if len(chunkshape) <= 1:
                        chunkshape = (min(chunkshape[0],1024*8),)
                    else:
                        chunkshape = (min(chunkshape[0],1024*8), chunkshape[1])
                    time_slice_data=hdffile.createCArray(accu_group,
                                                         name="adc_data",
                                                         shape=timedata.getshape(),
                                                         atom=tables.Int32Atom(shape=chunkshape,
                                                                               flavor="numarray"),
                                                         filters=filter,
                                                         title="adc data")
                    time_slice_data[:]=timedata
                else:
                    time_slice_data=hdffile.createArray(accu_group,
                                                        name="adc_data",
                                                        object=timedata,
                                                        title="adc data")

            finally:
                timedata=None
                time_slice_data=None
                accu_group=None
                self.lock.release()