コード例 #1
0
ファイル: test_jitclasses.py プロジェクト: scnakandala/numba
    def test_deferred_type(self):
        node_type = deferred_type()

        spec = OrderedDict()
        spec['data'] = float32
        spec['next'] = optional(node_type)

        @njit
        def get_data(node):
            return node.data

        @jitclass(spec)
        class LinkedNode(object):
            def __init__(self, data, next):
                self.data = data
                self.next = next

            def get_next_data(self):
                # use deferred type as argument
                return get_data(self.next)

            def append_to_tail(self, other):
                cur = self
                while cur.next is not None:
                    cur = cur.next
                cur.next = other

        node_type.define(LinkedNode.class_type.instance_type)

        first = LinkedNode(123, None)
        self.assertEqual(first.data, 123)
        self.assertIsNone(first.next)

        second = LinkedNode(321, first)

        first_meminfo = _get_meminfo(first)
        second_meminfo = _get_meminfo(second)
        self.assertEqual(first_meminfo.refcount, 3)
        self.assertEqual(second.next.data, first.data)
        self.assertEqual(first_meminfo.refcount, 3)
        self.assertEqual(second_meminfo.refcount, 2)

        # Test using deferred type as argument
        first_val = second.get_next_data()
        self.assertEqual(first_val, first.data)

        # Check setattr (issue #2606)
        self.assertIsNone(first.next)
        second.append_to_tail(LinkedNode(567, None))
        self.assertIsNotNone(first.next)
        self.assertEqual(first.next.data, 567)
        self.assertIsNone(first.next.next)
        second.append_to_tail(LinkedNode(678, None))
        self.assertIsNotNone(first.next.next)
        self.assertEqual(first.next.next.data, 678)

        # Check ownership
        self.assertEqual(first_meminfo.refcount, 3)
        del second, second_meminfo
        self.assertEqual(first_meminfo.refcount, 2)
コード例 #2
0
    def test_deferred_type(self):
        node_type = deferred_type()

        spec = OrderedDict()
        spec['data'] = float32
        spec['next'] = optional(node_type)

        @njit
        def get_data(node):
            return node.data

        @jitclass(spec)
        class LinkedNode(object):

            def __init__(self, data, next):
                self.data = data
                self.next = next

            def get_next_data(self):
                # use deferred type as argument
                return get_data(self.next)

        node_type.define(LinkedNode.class_type.instance_type)

        first = LinkedNode(123, None)
        self.assertEqual(first.data, 123)
        self.assertIsNone(first.next)

        second = LinkedNode(321, first)

        first_meminfo = _get_meminfo(first)
        second_meminfo = _get_meminfo(second)
        self.assertEqual(first_meminfo.refcount, 3)
        self.assertEqual(second.next.data, first.data)
        self.assertEqual(first_meminfo.refcount, 3)
        self.assertEqual(second_meminfo.refcount, 2)

        # Test using deferred type as argument
        first_val = second.get_next_data()
        self.assertEqual(first_val, first.data)

        # Check ownership
        self.assertEqual(first_meminfo.refcount, 3)
        del second, second_meminfo
        self.assertEqual(first_meminfo.refcount, 2)
コード例 #3
0
ファイル: test_jitclasses.py プロジェクト: digideskio/numba
    def test_deferred_type(self):
        node_type = deferred_type()

        spec = OrderedDict()
        spec['data'] = float32
        spec['next'] = optional(node_type)

        @njit
        def get_data(node):
            return node.data

        @jitclass(spec)
        class LinkedNode(object):

            def __init__(self, data, next):
                self.data = data
                self.next = next

            def get_next_data(self):
                # use deferred type as argument
                return get_data(self.next)

        node_type.define(LinkedNode.class_type.instance_type)

        first = LinkedNode(123, None)
        self.assertEqual(first.data, 123)
        self.assertIsNone(first.next)

        second = LinkedNode(321, first)

        first_meminfo = _get_meminfo(first)
        second_meminfo = _get_meminfo(second)
        self.assertEqual(first_meminfo.refcount, 3)
        self.assertEqual(second.next.data, first.data)
        self.assertEqual(first_meminfo.refcount, 3)
        self.assertEqual(second_meminfo.refcount, 2)

        # Test using deferred type as argument
        first_val = second.get_next_data()
        self.assertEqual(first_val, first.data)

        # Check ownership
        self.assertEqual(first_meminfo.refcount, 3)
        del second, second_meminfo
        self.assertEqual(first_meminfo.refcount, 2)
コード例 #4
0
ファイル: numerical.py プロジェクト: chrinide/exatomic
        for m in range(-L, L + 1):
            yield L, m
    else:
        for m in range(L + 1):
            if not m:
                yield L, m
            else:
                for i in (m, -m):
                    yield L, i


#####################
# Basis set classes #
#####################

shell_type = deferred_type()


@jitclass([('L', int64), ('nprim', int64), ('ncont', int64),
           ('spherical', boolean), ('gaussian', boolean),
           ('alphas', float64[:]), ('_coef', float64[:]),
           ('rs', optional(int64[:])), ('ns', optional(int64[:]))])
class Shell(object):
    """The primary object used for all things basis set related.
    Due to limitations in numba, contraction coefficients are stored
    as a 1D-array and reshaped when calling contract methods.

    Args:
        coef (np.ndarray): 1D-array of contraction coefficients
        alphas (np.ndarray): 1D-array of primitive exponents
        nprim (int): number of primitives in the shell
コード例 #5
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This is a more complicated jitclasses example.
Here, we implement a binarytree and iterative preorder and inorder traversal
function using a handwritten stack.
"""
from __future__ import print_function, absolute_import
import random
from collections import OrderedDict
from numba import njit
from numba import jitclass
from numba import int32, deferred_type, optional
from numba.runtime import rtsys

node_type = deferred_type()

spec = OrderedDict()
spec['data'] = int32
spec['left'] = optional(node_type)
spec['right'] = optional(node_type)


@jitclass(spec)
class TreeNode(object):
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

コード例 #6
0
        @numba.njit(fastmath=True)
        def func(x):
            if x > lbs[0] and x < ubs[-1]:
                ind = _get_ind(x, ubs)
                a = lbs[ind]
                b = ubs[ind]
                _x = 2*(x-a)/(b-a) - 1.0
                return _numba_chbevl(_x, cs[ind])
            else:
                return np.nan
        return func

################################################################################
# This is slow for now :(

leaf_type = numba.deferred_type()
leaf_spec = OrderedDict()
leaf_spec['a'] = numba.float64
leaf_spec['b'] = numba.float64
leaf_spec['ancestor'] = numba.optional(leaf_type)
leaf_spec['m'] = numba.float64
leaf_spec['ind'] = numba.int64
leaf_spec['parent'] = numba.boolean
leaf_spec['left'] = numba.optional(leaf_type)
leaf_spec['right'] = numba.optional(leaf_type)

@numba.jitclass(leaf_spec)
class Leaf(object):
    def __init__(self, a, b, ancestor, ind):
        self.a = a
        self.b = b
コード例 #7
0
                return self.get_misfit_incompatible(rffactor)
            if self.to[i] >= 0:
                temp += ((self.rfo[i] - self.rfp[i])**2 / (self.stdrfo[i]**2))
                k += 1
            if self.to[i] > 10:
                break
        self.misfit = np.sqrt(temp / k)
        tS = temp / rffactor
        if tS > 50.:
            tS = np.sqrt(tS * 50.)
        self.L = np.exp(-0.5 * tS)
        return True


# define type of disp object
disp_type = numba.deferred_type()
disp_type.define(disp.class_type.instance_type)

# define type of rf object
rf_type = numba.deferred_type()
rf_type.define(rf.class_type.instance_type)

####################################################
# Predefine the parameters for the data1d object
####################################################
spec_data = [  # Rayleigh/Love dispersion data
    ('dispR', disp_type),
    ('dispL', disp_type),
    # radial/transverse receiver function data
    ('rfr', rf_type),
    ('rft', rf_type),
コード例 #8
0
ファイル: mcprt4.py プロジェクト: sdickreuter/MCPRT
from scipy import interpolate

from utils import *

#c = 2.998e8  # m/s
#c = 1.0  # m/s

spec_Dipole = [
    ('r', float64[:]),
    ('k', float64[:]),
    ('E0', float64),
    ('phase', float64),
    ('wavelength', float64),
]

Dipole_type = deferred_type()


@jitclass(spec_Dipole)
class Dipole(object):
    def __init__(self, r, k, E0, phase, wavelength):
        self.r = r
        self.k = unit_vector(k) * 2 * np.pi / wavelength
        self.E0 = E0
        self.phase = phase
        self.wavelength = wavelength


Dipole_type.define(Dipole.class_type.instance_type)

spec_DipoleSet = [
コード例 #9
0
:Copyright:
    Author: Lili Feng
    Graduate Research Assistant
    CIEI, Department of Physics, University of Colorado Boulder
    email: [email protected]
"""

import fast_surf
import numba
import numpy as np
import vmodel
import copy

# define type of vmodel.model1d
model_type = numba.deferred_type()
model_type.define(vmodel.model1d.class_type.instance_type)


#--------------------------------------------------------------------------------------------------
#- fundamental array manipulations
#--------------------------------------------------------------------------------------------------
@numba.jit(numba.float32[:](numba.float32, numba.float32, numba.float32))
def _get_array(xmin, xmax, dx):
    xlst = []
    Nx = int((xmax - xmin) / dx + 1)
    for i in xrange(Nx):
        xlst.append(dx * i + xmin)
    return np.array(xlst, dtype=np.float32)

コード例 #10
0
    
    @property
    def nx(self):
        return self.__nx

    @property
    def nu(self):
        return self.__nu

    @property
    def ny(self):
        return self.__ny


NB_TYPE_DYNAMIC = nb.deferred_type()
NB_TYPE_DYNAMIC.define(Dynamic.class_type.instance_type)

class Simulate:
    def __init__(self,steps,nx,u,y,nbases,L,R=0.1,PFweightNum=30):
        
        
        # self.__dynamic = dynamic
        self.__u = u
        self.__y = y
        self.__nu = self.__u.shape[0]
        self.__ny = self.__y.shape[0]
        self.__nx = nx
        self.__steps = steps
        self.__nbases = nbases #assumed to be equal to all x and u
        self.__A = np.zeros((self.__nx,self.nbases**(self.__nx+self.__nu)),dtype=np.float64,order='C')
コード例 #11
0
ファイル: numerical.py プロジェクト: tjduigna/exatomic
            yield L, m
    else:
        for m in range(L + 1):
            if not m:
                yield L, m
            else:
                for i in (m, -m):
                    yield L, i



#####################
# Basis set classes #
#####################

shell_type = deferred_type()

@jitclass([('L', int64), ('nprim', int64), ('ncont', int64),
           ('spherical', boolean), ('gaussian', boolean),
           ('alphas', float64[:]), ('_coef', float64[:]),
           ('rs', optional(int64[:])), ('ns', optional(int64[:]))])
class Shell(object):
    """The primary object used for all things basis set related.
    Due to limitations in numba, contraction coefficients are stored
    as a 1D-array and reshaped when calling contract methods.

    Args:
        coef (np.ndarray): 1D-array of contraction coefficients
        alphas (np.ndarray): 1D-array of primitive exponents
        nprim (int): number of primitives in the shell
        ncont (int): number of contracted functions in the shell
コード例 #12
0
ファイル: pyray.py プロジェクト: natexornate/pytinyraytracer
]


@jitclass(matSpec)
class Material:
    def __init__(self, refractive_index, albedo, color, spec):
        self.albedo = np.array(albedo)
        self.difuse_color = np.array(color)
        self.specular_exponent = float(spec)
        self.refractive_index = float(refractive_index)


if os.environ.get('NUMBA_DISABLE_JIT') == '1':
    material_type = None
else:
    material_type = deferred_type()
    material_type.define(Material.class_type.instance_type)

sphereSpec = [
    ('center', numba.float64[:]),
    ('radius', numba.float64),
    ('radius2', numba.float64),
    ('material', material_type),
]


@jitclass(sphereSpec)
class Sphere:
    def __init__(self, center, radius, material):
        self.center = np.array(center)
        self.radius = float(radius)
コード例 #13
0
lst.push_front(3) 
lst.show()#321
@nb.jit
def sum_list(lst):
    result=0
    node=lst.head
    while node is not None:
        result+=node.value
        node=node.next
    return result
lst1=LinkedList()
[lst1.push_front(i) for i in range(1000)]
# print(sum_list(lst1))#无法推断类型
#可使用装饰器nb.jitclass 来编译Node和LinkedList类,装饰器接受一个参数,其中包含被装饰类的属性的类型。
#首先必须先声明属性,在定义类,使用nb.deferred_type()函数,其次属性next可以使NOne,也可以是一个Node实例,这被称为可选类型,nb.optional
node_type=nb.deferred_type()
node_spec=[('next',nb.optional(node_type)),('value',nb.int64)]
@nb.jitclass(node_spec)
class Node1:
    def __init__(self,value):
        self.next=None
        self.value=value
node_type.define(Node.class_type.instance_type)
ll_spec=[('head',nb.optional(Node.class_type.instance_type))]
@nb.jitclass(ll_spec)
class LinkedList1:#实现链表
    def __init__(self):
        self.head=None
    def push_front(self,value):
        if self.head==None:
            self.head=Node(value)
コード例 #14
0
ファイル: core.py プロジェクト: kshitijkg/Multiagent-RL
import numba
from numba import jit
from numba import int32, float32, boolean, float64
from numba import jitclass, deferred_type


@jitclass([('p_pos', float64[:]), ('p_vel', float64[:])])
class EntityState_nb(object):
    def __init__(self):
        # physical position
        self.p_pos
        # physical velocity
        self.p_vel


EntityState_type = deferred_type()
EntityState_type.define(EntityState_nb.class_type.instance_type)


@jitclass([('size', float32), ('movable', boolean), ('collide', boolean),
           ('state', EntityState_type)])
class Entity_nb(object):
    def __init__(self):
        # state
        self.state = EntityState_nb()
        # entity collides with others
        self.collide = True
        self.size = 0.050
        self.movable = False

コード例 #15
0
ファイル: pCN.py プロジェクト: puat133/MCMC-MultiSPDE
import numpy as np
import numba as nb
import mcmc.util as util
import mcmc.fourier as fourier
# import mcmc.layer as layer
import mcmc.randomGenerator as randomGenerator
import mcmc.measurement as meas



Rand_gen_type = nb.deferred_type()
Rand_gen_type.define(randomGenerator.RandomGenerator.class_type.instance_type)
meas_type = nb.deferred_type()
meas_type.define(meas.Measurement.class_type.instance_type)
fourier_type = nb.deferred_type()
fourier_type.define(fourier.FourierAnalysis.class_type.instance_type)    
spec = [
    ('n_layers',nb.int64),
    ('record_skip',nb.int64),
    ('record_count',nb.int64),
    ('max_record_history',nb.int64),
    ('beta',nb.float64),
    ('betaZ',nb.float64),
    ('random_gen',Rand_gen_type),
    ('measurement',meas_type),
    ('fourier',fourier_type),
    ('H',nb.complex128[:,::1]),
    ('I',nb.float64[:,::1]),
    ('H_t_H',nb.float64[:,::1]),
    ('H_dagger',nb.complex128[:,::1]),
    ('yBar',nb.float64[::1]),
コード例 #16
0
import numpy as np
import numba as nb
import mcmc.util as util
import mcmc.fourier as fourier
import mcmc.L as L
import mcmc.randomGenerator as randomGenerator

L_matrix_type = nb.deferred_type()
Rand_gen_type = nb.deferred_type()
L_matrix_type.define(L.Lmatrix.class_type.instance_type)
Rand_gen_type.define(randomGenerator.RandomGenerator.class_type.instance_type)
spec = [
    ('LMat', L_matrix_type),
    ('rand_gen', Rand_gen_type),
    ('uStdev', nb.complex128[:]),
    ('beta', nb.float64),
    ('betaZ', nb.float64),
    ('current_sample', nb.complex128[:]),
    ('norm_current_sample', nb.float64),
    ('current_log_det_L', nb.float64),
]


@nb.jitclass(spec)
class pCN():
    def __init__(self, LMat, rg, uStdev, init_sample, beta=1):
        self.LMat = LMat
        self.rand_gen = rg
        self.uStdev = uStdev
        self.beta = beta
        self.betaZ = 1 - np.sqrt(beta**2)
コード例 #17
0
ファイル: linkedlist.py プロジェクト: zxsted/numba
"""
This example demonstrates jitclasses and deferred types for writing a
singly-linked-list.
"""
from __future__ import print_function, absolute_import
from collections import OrderedDict
import numpy as np
from numba import njit
from numba import jitclass
from numba import int32, deferred_type, optional
from numba.runtime import rtsys

node_type = deferred_type()

spec = OrderedDict()
spec['data'] = int32
spec['next'] = optional(node_type)


@jitclass(spec)
class LinkedNode(object):
    def __init__(self, data, next):
        self.data = data
        self.next = next

    def prepend(self, data):
        return LinkedNode(data, self)


@njit
def make_linked_node(data):
コード例 #18
0
ファイル: binarytree.py プロジェクト: FedericoStra/numba
# -*- coding: utf-8 -*-

"""
This is a more complicated jitclasses example.
Here, we implement a binarytree and iterative preorder and inorder traversal
function using a handwritten stack.
"""
from __future__ import print_function, absolute_import
import random
from collections import OrderedDict
from numba import njit
from numba import jitclass
from numba import int32, deferred_type, optional
from numba.runtime import rtsys

node_type = deferred_type()

spec = OrderedDict()
spec['data'] = int32
spec['left'] = optional(node_type)
spec['right'] = optional(node_type)


@jitclass(spec)
class TreeNode(object):
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

コード例 #19
0
Class for tracking the result of selection to allow for chaining.
"""

import numba
import numpy as np

from .flags import *
from .indexset import IndexSet
from .sel import _sel
from .omit import _omit

from collections import OrderedDict

sel_result_spec = OrderedDict()

indexset_type = numba.deferred_type()

sel_result_spec['start'] = numba.int64
sel_result_spec['stop'] = numba.int64
sel_result_spec['indexset'] = indexset_type
sel_result_spec['flags'] = numba.boolean[:]
sel_result_spec['_num_flags'] = numba.int64
sel_result_spec['has_flags'] = numba.bool_


@numba.jitclass(sel_result_spec)
class SelResult_:
    def __init__(self, indexset):
        self.indexset = indexset
        self.start = 0
        self.stop = indexset.n
コード例 #20
0
ファイル: heurisp.py プロジェクト: liespace/pyHSP
class OrientationSpaceExplorer(object):
    def __init__(
            self,
            minimum_radius=0.2,
            maximum_radius=2.96,  # 2.5
            minimum_clearance=1.02,
            neighbors=32,
            maximum_curvature=0.2,
            timeout=1.0,
            overlap_rate=0.5):
        self.minimum_radius = minimum_radius
        self.maximum_radius = maximum_radius
        self.minimum_clearance = minimum_clearance
        self.neighbors = neighbors
        self.maximum_curvature = maximum_curvature
        self.timeout = timeout
        self.overlap_rate = overlap_rate
        # planning related
        self.start = None
        self.goal = None
        self.grid_ori = None
        self.grid_map = None
        self.grid_res = None
        self.grid_pad = None
        self.obstacle = 255

    def exploring(self, plotter=None):
        close_set, open_set = numba.typed.List(), [(self.start.f, self.start)]
        close_set.append((0., 0., 0., 0.)), close_set.pop()
        while open_set:
            circle = self.pop_top(open_set)
            if self.goal.f < circle.f:
                return True
            if not self.exist(circle, close_set):
                expansion = self.expand(circle)
                self.merge(expansion, open_set)
                if self.overlap(circle, self.goal) and circle.f < self.goal.g:
                    self.goal.g = circle.f
                    self.goal.f = self.goal.g + self.goal.h
                    self.goal.set_parent(circle)
                close_set.append((circle.x, circle.y, circle.a, circle.r))
            if plotter:
                plotter([circle])
        return False

    @property
    def circle_path(self):
        if self.goal:
            path, parent = [self.goal], self.goal.parent
            while parent:
                path.append(parent)
                parent = parent.parent
            path.reverse()
            return path
        return []

    def path(self):
        circles = self.circle_path
        if circles:
            return [(p.x, p.y, p.a, p.r) for p in circles]
        return []

    def initialize(self,
                   start,
                   goal,
                   grid_map,
                   grid_res,
                   grid_ori,
                   obstacle=255):
        # type: (CircleNode, CircleNode, np.ndarray, float, CircleNode, int) -> OrientationSpaceExplorer
        """
        :param start: start circle-node
        :param goal: goal circle-node
        :param grid_map: occupancy map(0-1), 2d-square, with a certain resolution: gird_res
        :param grid_res: resolution of occupancy may (m/pixel)
        :param grid_ori:
        :param obstacle: value of the pixels of obstacles region on occupancy map.
        """
        self.start, self.goal = start, goal
        self.grid_map, self.grid_res, self.grid_ori, self.obstacle = grid_map, grid_res, grid_ori, obstacle
        # padding grid map for clearance calculation
        s = int(
            np.ceil((self.maximum_radius + self.minimum_clearance) /
                    self.grid_res))
        self.grid_pad = np.pad(self.grid_map, ((s, s), (s, s)),
                               'constant',
                               constant_values=((self.obstacle, self.obstacle),
                                                (self.obstacle,
                                                 self.obstacle)))
        # complete the start and goal
        self.start.r, self.start.g = self.clearance(
            self.start) - self.minimum_clearance, 0
        self.start.h = reeds_shepp.path_length(
            (start.x, start.y, start.a),
            (self.goal.x, self.goal.y, self.goal.a),
            1. / self.maximum_curvature)
        self.goal.r, self.goal.h, self.goal.g = self.clearance(
            self.goal) - self.minimum_clearance, 0, np.inf
        self.start.f, self.goal.f = self.start.g + self.start.h, self.goal.g + self.goal.h
        return self

    @staticmethod
    def merge(expansion, open_set):
        """
        :param expansion: expansion is a set in which items are unordered.
        :param open_set: we define the open set as a set in which items are sorted from Large to Small by cost.
        """
        open_set.extend(zip(map(lambda x: x.f, expansion), expansion))
        open_set.sort(reverse=True)

    @staticmethod
    def pop_top(open_set):
        """
        :param open_set: we define the open set as a set in which items are sorted from Large to Small by cost.
        """
        return open_set.pop()[-1]

    def exist(self, circle, close_set):
        state = (circle.x, circle.y, circle.a)
        return self.jit_exist(state, close_set, self.maximum_curvature)

    @staticmethod
    @njit
    def jit_exist(state, close_set, maximum_curvature):
        def distance(one, another, curvature):
            euler = np.sqrt((one[0] - another[0])**2 +
                            (one[1] - another[1])**2)
            angle = np.abs(one[2] - another[2])
            angle = (angle + np.pi) % (2 * np.pi) - np.pi
            # angle = np.pi - angle if angle > np.pi / 2 else angle
            heuristic = angle / curvature
            return euler if euler > heuristic else heuristic

        for item in close_set:
            if distance(state, item, maximum_curvature) < item[-1] - 0.1:
                return True
        return False

    def overlap(self, circle, goal):
        """
        check if two circles overlap with each other
        in a certain margin (overlap_rate[e.g., 50%] of the radius of the smaller circle),
        which guarantees enough space for a transition motion.
        """
        return self.jit_overlap((circle.x, circle.y, circle.r),
                                (goal.x, goal.y, goal.r), self.overlap_rate)

    @staticmethod
    @njit
    def jit_overlap(circle, goal, rate):
        euler = np.sqrt((circle[0] - goal[0])**2 + (circle[1] - goal[1])**2)
        r1, r2 = min([circle[2], goal[2]]), max([circle[2], goal[2]])
        return euler < r1 * rate + r2

    def expand(self, circle):
        def buildup(state):
            child = self.CircleNode(state[0], state[1], state[2], state[3])
            # build the child
            child.set_parent(circle)
            # child.h = self.distance(child, self.goal)
            child.h = reeds_shepp.path_length(
                (child.x, child.y, child.a),
                (self.goal.x, self.goal.y, self.goal.a),
                1. / self.maximum_curvature)
            child.g = circle.g + reeds_shepp.path_length(
                (circle.x, circle.y, circle.a),
                (child.x, child.y, child.a), 1. / self.maximum_curvature)
            child.f = child.g + child.h
            # add the child to expansion set
            return child

        neighbors = self.jit_neighbors((circle.x, circle.y, circle.a),
                                       circle.r, self.neighbors)
        children = self.jit_children(
            neighbors, (self.grid_ori.x, self.grid_ori.y, self.grid_ori.a),
            self.grid_pad, self.grid_map, self.grid_res, self.maximum_radius,
            self.minimum_radius, self.minimum_clearance, self.obstacle)
        return map(buildup, children)

    @staticmethod
    @njit
    def jit_children(neighbors, origin, grid_pad, grid_map, grid_res,
                     maximum_radius, minimum_radius, minimum_clearance,
                     obstacle):
        def clearance(state):
            s_x, s_y, s_a = origin[0], origin[1], origin[2]
            c_x, c_y, c_a = state[0], state[1], state[2]
            x = (c_x - s_x) * np.cos(s_a) + (c_y - s_y) * np.sin(s_a)
            y = -(c_x - s_x) * np.sin(s_a) + (c_y - s_y) * np.cos(s_a)
            u = int(np.floor(y / grid_res + grid_map.shape[0] / 2))
            v = int(np.floor(x / grid_res + grid_map.shape[0] / 2))
            size = int(np.ceil(
                (maximum_radius + minimum_clearance) / grid_res))
            subspace = grid_pad[u:u + 2 * size + 1, v:v + 2 * size + 1]
            rows, cols = np.where(subspace >= obstacle)
            if len(rows):
                row, col = np.fabs(rows - size) - 1, np.fabs(cols - size) - 1
                rs = np.sqrt(row**2 + col**2) * grid_res
                return rs.min()
            else:
                return size * grid_res

        children = numba.typed.List()
        children.append((0., 0., 0., 0.)), children.pop()
        for neighbor in neighbors:
            r = min([clearance(neighbor) - minimum_clearance, maximum_radius])
            if r > minimum_radius:
                children.append((neighbor[0], neighbor[1], neighbor[2], r))
        return children

    @staticmethod
    @njit
    def jit_neighbors(state, radius, number):
        def lcs2gcs(point):
            x, y, a = point
            xo, yo, ao = state
            x1 = x * np.cos(ao) - y * np.sin(ao) + xo
            y1 = x * np.sin(ao) + y * np.cos(ao) + yo
            a1 = a + ao
            return x1, y1, a1

        neighbors = numba.typed.List()
        neighbors.append((0., 0., 0.)), neighbors.pop()
        for n in np.radians(np.linspace(-90, 90, number / 2)):
            neighbor = (radius * np.cos(n), radius * np.sin(n), n)
            opposite = (radius * np.cos(n + np.pi), radius * np.sin(n + np.pi),
                        n)
            neighbor = lcs2gcs(neighbor)
            opposite = lcs2gcs(opposite)
            neighbors.extend([neighbor, opposite])
        return neighbors

    def clearance(self, circle):
        origin, coord = (self.grid_ori.x, self.grid_ori.y,
                         self.grid_ori.a), (circle.x, circle.y, circle.a)
        return self.jit_clearance(coord, origin, self.grid_pad, self.grid_map,
                                  self.grid_res, self.maximum_radius,
                                  self.minimum_clearance, self.obstacle)

    @staticmethod
    @njit
    def jit_clearance(coord, origin, grid_pad, grid_map, grid_res,
                      maximum_radius, minimum_clearance, obstacle):
        s_x, s_y, s_a = origin[0], origin[1], origin[2]
        c_x, c_y, c_a = coord[0], coord[1], coord[2]
        x = (c_x - s_x) * np.cos(s_a) + (c_y - s_y) * np.sin(s_a)
        y = -(c_x - s_x) * np.sin(s_a) + (c_y - s_y) * np.cos(s_a)
        u = int(np.floor(y / grid_res + grid_map.shape[0] / 2))
        v = int(np.floor(x / grid_res + grid_map.shape[0] / 2))
        size = int(np.ceil((maximum_radius + minimum_clearance) / grid_res))
        subspace = grid_pad[u:u + 2 * size + 1, v:v + 2 * size + 1]
        rows, cols = np.where(subspace >= obstacle)
        if len(rows):
            row, col = np.fabs(rows - size) - 1, np.fabs(cols - size) - 1
            rs = np.sqrt(row**2 + col**2) * grid_res
            return rs.min()
        else:
            return size * grid_res

    circle_node = numba.deferred_type()
    spec = [('x', numba.float64), ('y', numba.float64), ('a', numba.float64),
            ('r', numba.optional(numba.float64)), ('h', numba.float64),
            ('g', numba.float64), ('f', numba.float64),
            ("parent", numba.optional(circle_node)),
            ('children', numba.optional(numba.types.List(circle_node)))]

    # @numba.jitclass(spec)
    class CircleNode(object):
        def __init__(self, x=None, y=None, a=None, r=None):
            self.x = x
            self.y = y
            self.a = a
            self.r = r
            self.h = np.inf  # cost from here to goal, heuristic distance or actual one
            self.g = np.inf  # cost from start to here, actual distance
            self.f = self.h + self.g
            self.parent = None
            self.children = None

        def set_parent(self, circle):
            self.parent = circle

        def lcs2gcs(self, circle):
            # type: (OrientationSpaceExplorer.CircleNode) -> OrientationSpaceExplorer.CircleNode
            """
            transform self's coordinate from local coordinate system (LCS) to global coordinate system (GCS)
            :param circle: the circle-node contains the coordinate (in GCS) of the origin of LCS.
            """
            xo, yo, ao = circle.x, circle.y, circle.a
            x = self.x * np.cos(ao) - self.y * np.sin(ao) + xo
            y = self.x * np.sin(ao) + self.y * np.cos(ao) + yo
            a = self.a + ao
            self.x, self.y, self.a = x, y, a
            return self

        def gcs2lcs(self, circle):
            # type: (OrientationSpaceExplorer.CircleNode) -> OrientationSpaceExplorer.CircleNode
            """
            transform self's coordinate from global coordinate system (LCS) to local coordinate system (GCS)
            :param circle: the circle-node contains the coordinate (in GCS) of the origin of LCS.
            """
            xo, yo, ao = circle.x, circle.y, circle.a
            x = (self.x - xo) * np.cos(ao) + (self.y - yo) * np.sin(ao)
            y = -(self.x - xo) * np.sin(ao) + (self.y - yo) * np.cos(ao)
            a = self.a - ao
            self.x, self.y, self.a = x, y, a
            return self
コード例 #21
0
import numba
from collections import OrderedDict

linked_node_spec = OrderedDict()

node_type = numba.deferred_type()

linked_node_spec["parent"] = node_type
linked_node_spec["child"] = node_type

linked_node_spec["depth"] = numba.int32
linked_node_spec["start"] = numba.int32
linked_node_spec["end"] = numba.int32
linked_node_spec["index"] = numba.int32

linked_node_spec["node_mean"] = numba.float32
linked_node_spec["node_impurity"] = numba.float32
linked_node_spec["right_child_mean"] = numba.float32
linked_node_spec["right_child_impurity"] = numba.float32

linked_node_spec["sorted_dim"] = numba.int32


@numba.jitclass(linked_node_spec)
class LinkedNode:
    def __init__(self, depth):
        self.parent = self
        self.child = self
        self.depth = depth

コード例 #22
0
ファイル: primitives.py プロジェクト: pmclaugh/Clive2
    return np.array([x, y, z], dtype=np.float64)


@numba.njit
def vec(x, y, z):
    return np.array([x, y, z], dtype=np.float64)


@numba.njit
def unit(v):
    return v / np.linalg.norm(v)

# fast primitives


ray_type = numba.deferred_type()
tree_box_type = numba.deferred_type()


@numba.experimental.jitclass([
    ('origin', numba.types.Array(numba.float64, 1, layout='C')),
    ('direction', numba.types.Array(numba.float64, 1, layout='C')),
    ('inv_direction', numba.types.Array(numba.float64, 1, layout='C')),
    ('sign', numba.uint8[:]),
    ('color', numba.types.Array(numba.float64, 1, layout='C')),
    ('local_color', numba.types.Array(numba.float64, 1, layout='C')),
    ('i', numba.int32),
    ('j', numba.int32),
    ('bounces', numba.int32),
    ('p', numba.float64),
    ('local_p', numba.float64),
コード例 #23
0
ファイル: test_jitclasses.py プロジェクト: numba/numba
    def test_deferred_type(self):
        node_type = deferred_type()

        spec = OrderedDict()
        spec['data'] = float32
        spec['next'] = optional(node_type)

        @njit
        def get_data(node):
            return node.data

        @jitclass(spec)
        class LinkedNode(object):

            def __init__(self, data, next):
                self.data = data
                self.next = next

            def get_next_data(self):
                # use deferred type as argument
                return get_data(self.next)

            def append_to_tail(self, other):
                cur = self
                while cur.next is not None:
                    cur = cur.next
                cur.next = other

        node_type.define(LinkedNode.class_type.instance_type)

        first = LinkedNode(123, None)
        self.assertEqual(first.data, 123)
        self.assertIsNone(first.next)

        second = LinkedNode(321, first)

        first_meminfo = _get_meminfo(first)
        second_meminfo = _get_meminfo(second)
        self.assertEqual(first_meminfo.refcount, 3)
        self.assertEqual(second.next.data, first.data)
        self.assertEqual(first_meminfo.refcount, 3)
        self.assertEqual(second_meminfo.refcount, 2)

        # Test using deferred type as argument
        first_val = second.get_next_data()
        self.assertEqual(first_val, first.data)

        # Check setattr (issue #2606)
        self.assertIsNone(first.next)
        second.append_to_tail(LinkedNode(567, None))
        self.assertIsNotNone(first.next)
        self.assertEqual(first.next.data, 567)
        self.assertIsNone(first.next.next)
        second.append_to_tail(LinkedNode(678, None))
        self.assertIsNotNone(first.next.next)
        self.assertEqual(first.next.next.data, 678)

        # Check ownership
        self.assertEqual(first_meminfo.refcount, 3)
        del second, second_meminfo
        self.assertEqual(first_meminfo.refcount, 2)
コード例 #24
0
ファイル: fastmc.py プロジェクト: junxie01/pyMCinv
Numba is used for speeding up of the code.

:Copyright:
    Author: Lili Feng
    Graduate Research Assistant
    CIEI, Department of Physics, University of Colorado Boulder
    email: [email protected]
"""
import numpy as np
import math
import numba
import random
import vmodel, modparam, data, eigenkernel

model1d_type = numba.deferred_type()
model1d_type.define(vmodel.model1d.class_type.instance_type)

data_type = numba.deferred_type()
data_type.define(data.data1d.class_type.instance_type)

eigk_type = numba.deferred_type()
eigk_type.define(eigenkernel.eigkernel.class_type.instance_type)

####################################################
# Predefine the parameters for the ttisolver object
####################################################
spec_ttisolver = [('model', model1d_type), ('indata', data_type),
                  ('eigkR', eigk_type), ('eigkL', eigk_type),
                  ('hArr', numba.float32[:])]
コード例 #25
0
ファイル: layer.py プロジェクト: puat133/MCMC-MultiSPDE
import numpy as np
import numba as nb
import mcmc.util as util
import mcmc.fourier as fourier
import mcmc.L as L
import mcmc.pCN as pCN

L_matrix_type = nb.deferred_type()
L_matrix_type.define(L.Lmatrix.class_type.instance_type)
pCN_type = nb.deferred_type()
pCN_type.define(pCN.pCN.class_type.instance_type)
fourier_type = nb.deferred_type()
fourier_type.define(fourier.FourierAnalysis.class_type.instance_type)
spec = [
    ('is_stationary', nb.boolean),
    ('sqrt_beta', nb.float64),
    ('order_number', nb.int64),
    ('n_samples', nb.int64),
    ('pcn', pCN_type),
    ('i_record', nb.int64),
    ('stdev', nb.complex128[::1]),
    ('stdev_sym', nb.complex128[::1]),
    ('samples_history', nb.complex128[:, ::1]),
    ('current_sample', nb.complex128[::1]),
    ('current_sample_sym', nb.complex128[::1]),
    ('current_sample_scaled_norm', nb.float64),
    ('current_log_L_det', nb.float64),
    ('new_sample', nb.complex128[::1]),
    ('new_sample_sym', nb.complex128[::1]),
    ('new_sample_scaled_norm', nb.float64),
    ('new_log_L_det', nb.float64),
コード例 #26
0
import numpy as np
from numba import intc, float64, deferred_type
from numba import types
from numba.experimental import jitclass
from numba.extending import register_jitable
from numba.core.errors import TypingError
from numba import types, typeof
from kalmantv.numba.kalmantv import KalmanTV, _mvn_sim, _quad_form
from rodeo.utils import rand_mat

kalman_type = deferred_type()
kalman_type.define(KalmanTV.class_type.instance_type)

@register_jitable
def _fempty(shape):
    """
    Create an empty ndarray with the given shape in fortran order.

    Numba cannot create fortran arrays directly, so this is done by transposing a C order array, as explained [here](https://numba.pydata.org/numba-doc/dev/user/faq.html#how-can-i-create-a-fortran-ordered-array).
    """
    return np.empty(shape[::-1]).T


@register_jitable
def _interrogate_chkrebtii(x_meas, var_meas,
                           fun, t, theta,
                           wgt_meas, mu_state_pred, var_state_pred, z_state,
                           tx_state, twgt_meas, tchol_state):
    """
    Interrogate method of Chkrebtii et al (2016).
コード例 #27
0
import numpy as np
from . import BiQuad

import numba
from tqdm import tqdm

BiQuad_type = numba.deferred_type()
BiQuad_type.define(BiQuad.BiQuad.class_type.instance_type)

spec = [
    ('filters', BiQuad_type[:]),
]


# simple LF-Rd wavetable oscillator based on Fant 1985, Fant 1995
class SerialFilterBank:
    def tick(self, x, verbose=False):

        if np.isscalar(x):
            y = x
            for filter in self.filters:
                y = filter.tick(y)
            return y
        else:

            y = x
            for i in tqdm(range(len(y)), disable=(not verbose)):
                for filter in self.filters:
                    y[i] = filter.tick(y[i])
            return y
コード例 #28
0
import numpy as np
from Weno import Weno
from numba import jitclass
from numba import int32, float64, deferred_type

#------------------------------------------------------
Weno_type = deferred_type()
Weno_type.define(Weno.class_type.instance_type)
spec = [('c21', float64), ('c22', float64), ('c31', float64), ('c32', float64),
        ('size', int32), ('u1', float64[:]), ('u2', float64[:]),
        ("W", Weno_type)]


#-------------------------------------------------------
@jitclass(spec)
class RK3TVD:
    def __init__(self, size, L):
        self.c21 = 3. / 4.
        self.c22 = 1. / 4.
        self.c31 = 1. / 3.
        self.c32 = 2. / 3.
        self.size = size
        self.u1 = np.empty(self.size)
        self.u2 = np.empty(self.size)
        self.W = Weno(size, L)

    def op(self, Meth, InOut, dt):

        self.W.weno(Meth, InOut, self.u1)
        self.u1 = InOut + dt * self.u1
コード例 #29
0
ファイル: stack.py プロジェクト: Alexhuszagh/numba
This is an extension to the simpler singly-linked-list example in
``linkedlist.py``.
Here, we make a better interface in the Stack class that encapsuate the
underlying linked-list.
"""

from __future__ import print_function, absolute_import
from numba.utils import OrderedDict
from numba import njit
from numba import jitclass
from numba import deferred_type, intp, optional
from numba.runtime import rtsys


linkednode_spec = OrderedDict()
linkednode_type = deferred_type()
linkednode_spec['data'] = data_type = deferred_type()
linkednode_spec['next'] = optional(linkednode_type)


@jitclass(linkednode_spec)
class LinkedNode(object):
    def __init__(self, data):
        self.data = data
        self.next = None


linkednode_type.define(LinkedNode.class_type.instance_type)

stack_spec = OrderedDict()
stack_spec['head'] = optional(linkednode_type)
コード例 #30
0
    def fourierTransformHalf(self, z):
        return u2.rfft2(z, self.basis_number)

    def constructU(self, uHalf2D):
        """
        Construct Toeplitz Matrix
        """
        return u2.constructU(uHalf2D, self.Index)

    def constructMatexplicit(self, uHalf2D, fun):
        temp = fun(self.inverseFourierLimited(uHalf2D).T)
        temp2 = self.fourierTransformHalf(temp)
        return self.constructU(temp2)


fourier_type = nb.deferred_type()
fourier_type.define(FourierAnalysis_2D.class_type.instance_type)
specL = [
    ('fourier', fourier_type),
    ('sqrt_beta', nb.float64),
    ('current_L', nb.complex128[:, ::1]),
    ('latest_computed_L', nb.complex128[:, ::1]),
]


@nb.jitclass(specL)
class Lmatrix_2D:
    def __init__(self, f, sqrt_beta):
        self.fourier = f
        self.sqrt_beta = sqrt_beta
コード例 #31
0
ファイル: simulation.py プロジェクト: puat133/MCMC-MultiSPDE
import numpy as np
import numba as nb
import mcmc.util as util
import mcmc.fourier as fourier
import mcmc.L as L
import mcmc.randomGenerator as randomGenerator
import mcmc.pCN as pCN
import mcmc.measurement as meas
import mcmc.simulationResults as simRes
# import scipy as scp
import time

fourier_type = nb.deferred_type()
fourier_type.define(fourier.FourierAnalysis.class_type.instance_type)
L_matrix_type = nb.deferred_type()
L_matrix_type.define(L.Lmatrix.class_type.instance_type)
Rand_gen_type = nb.deferred_type()
Rand_gen_type.define(randomGenerator.RandomGenerator.class_type.instance_type)
pCN_type = nb.deferred_type()
pCN_type.define(pCN.pCN.class_type.instance_type)
meas_type = nb.deferred_type()
meas_type.define(meas.Measurement.class_type.instance_type)
sim_result_type = nb.deferred_type()
sim_result_type.define(simRes.SimulationResult.class_type.instance_type)
spec = [
    ('fourier', fourier_type),
    ('random_gen', Rand_gen_type),
    ('pcn', pCN_type),
    ('sim_result', sim_result_type),
    # ('LMat',L_matrix_type),
    ('measurement', meas_type),
コード例 #32
0
ファイル: primitives.py プロジェクト: knut0815/Clive2
    return np.array([x, y, z], dtype=np.float64)


@numba.njit
def vec(x, y, z):
    return np.array([x, y, z], dtype=np.float64)


@numba.njit
def unit(v):
    return v / np.linalg.norm(v)


# fast primitives

ray_type = numba.deferred_type()
node_type = numba.deferred_type()
box_type = numba.deferred_type()


@numba.experimental.jitclass([
    ('origin', numba.float64[3::1]),
    ('direction', numba.float64[3::1]),
    ('inv_direction', numba.float64[3::1]),
    ('sign', numba.uint8[3::1]),
    ('color', numba.float64[3::1]),
    ('local_color', numba.float64[3::1]),
    ('i', numba.int32),
    ('j', numba.int32),
    ('bounces', numba.int32),
    ('p', numba.float64),
コード例 #33
0
ファイル: stack.py プロジェクト: zsoltc89/numba
This example demonstrates jitclasses and deferred type.
This is an extension to the simpler singly-linked-list example in
``linkedlist.py``.
Here, we make a better interface in the Stack class that encapsuate the
underlying linked-list.
"""

from __future__ import print_function, absolute_import
from collections import OrderedDict
from numba import njit
from numba import deferred_type, intp, optional
from numba.core.runtime import rtsys
from numba.experimental import jitclass

linkednode_spec = OrderedDict()
linkednode_type = deferred_type()
linkednode_spec['data'] = data_type = deferred_type()
linkednode_spec['next'] = optional(linkednode_type)


@jitclass(linkednode_spec)
class LinkedNode(object):
    def __init__(self, data):
        self.data = data
        self.next = None


linkednode_type.define(LinkedNode.class_type.instance_type)

stack_spec = OrderedDict()
stack_spec['head'] = optional(linkednode_type)
コード例 #34
0
ファイル: common.py プロジェクト: KaiL4eK/autopilot_simulator

point_spec = [('x', nb.float32), ('y', nb.float32)]


@nb.jitclass(point_spec)
class Point(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y

    # def __str__(self):
    #     return "(%s, %s)" % (self.x, self.y)


point_type = nb.deferred_type()
point_type.define(Point.class_type.instance_type)


################ Just for tests ######################
@nb.njit(nb.float32(nb.float32[2], nb.float32[2]))
def get_distance_to_4(p1, p2):
    dx = p1[0] - p2[0]
    dy = p1[1] - p2[1]

    return m.hypot(dx, dy)


@nb.njit
def get_distance_to(from_object, to_object):
    dx = to_object.x - from_object.x
コード例 #35
0
ファイル: LSE_State.py プロジェクト: jw5243/Cube-Learner
class MoveType(IntEnum):
    Standard, Double, Prime = range(3)


class Pieces(IntEnum):
    UR, UF, UL, UB, DF, DB = range(6)


def convert_move_to_string(move, move_type):
    return ("U" if move == MoveSet.U else
            "M") + ("" if move_type == MoveType.Standard else
                    "2" if move_type == MoveType.Double else "'")


lse_type = deferred_type()
'''@jitclass([
    # Constructor variables
    ('lse_state', lse_type),#LSE_State.class_type.instance_type)
    ('edge_orientation_state', typeof([True])),
    ('edge_permutation_state', typeof(numpy.zeros(1, dtype = int))),
    ('center_AUF_state', typeof(numpy.zeros(1, dtype = int))),
    ('misoriented_centers_orientation_state', typeof([True])),
    ('edge_orientation_state_replacement', typeof([True])),
    ('edge_permutation_state_in_place', typeof(numpy.zeros(1, dtype = int))),
    # toString variables
    ('data', typeof("")),
    # Equality variables
    ('other', lse_type),
    # swap_pieces_permutation method
    ('piece1', typeof(Pieces.UR)),
コード例 #36
0
import numpy as np
from Weno import Weno
from numba import jitclass
from numba import int32, float64,deferred_type

#------------------------------------------------------
Weno_type = deferred_type()
Weno_type.define(Weno.class_type.instance_type)
spec = [
    ('c21', float64), ('c22', float64),
    ('c31', float64), ('c32', float64),
    ('size',int32),
    ('u1', float64[:]),
    ('u2', float64[:]),
    ("W", Weno_type)
]
#-------------------------------------------------------
@jitclass(spec)
class RK3TVD:
    def __init__(self,size,L):
        self.c21=3./4.
        self.c22=1./4.
        self.c31=1./3.
        self.c32=2./3.
        self.size=size
        self.u1=np.empty(self.size)
        self.u2=np.empty(self.size)
        self.W=Weno(size,L)

    def op(self,Meth,InOut,dt):