コード例 #1
0
ファイル: grid_test.py プロジェクト: jackd/numba-stream
 def test_sparse_neighborhood_padded(self):
     in_shape = np.array((4, 5), dtype=np.int64)
     kernel_shape = np.array((3, 3), dtype=np.int64)
     strides = np.array((2, 2), dtype=np.int64)
     padding = np.array((1, 1), dtype=np.int64)
     p, indices, splits, out_shape = grid.sparse_neighborhood(
         in_shape, kernel_shape, strides, padding=padding)
     np.testing.assert_equal(out_shape, (2, 3))
     np.testing.assert_equal(
         p,
         (4, 5, 7, 8, 3, 4, 5, 6, 7, 8, 3, 4, 6, 7, 1, 2, 4, 5, 7, 8) +
         tuple(range(9)) + (0, 1, 3, 4, 6, 7),
     )
     np.testing.assert_equal(
         indices,
         [
             0,
             1,
             5,
             6,
             1,
             2,
             3,
             6,
             7,
             8,
             3,
             4,
             8,
             9,
             5,
             6,
             10,
             11,
             15,
             16,
             6,
             7,
             8,
             11,
             12,
             13,
             16,
             17,
             18,
             8,
             9,
             13,
             14,
             18,
             19,
         ],
     )
     np.testing.assert_equal(splits, [0, 4, 10, 14, 20, 29, 35])
コード例 #2
0
ファイル: grid_test.py プロジェクト: jackd/numba-stream
 def test_sparse_neighborhood(self):
     in_shape = np.array((4, 5), dtype=np.int64)
     kernel_shape = np.array((3, 3), dtype=np.int64)
     strides = np.array((2, 2), dtype=np.int64)
     padding = np.array((0, 0), dtype=np.int64)
     p, indices, splits, out_shape = grid.sparse_neighborhood(
         in_shape, kernel_shape, strides, padding=padding)
     np.testing.assert_equal(out_shape, (1, 2))
     np.testing.assert_equal(p, tuple(range(9)) * 2)
     np.testing.assert_equal(
         indices,
         [0, 1, 2, 5, 6, 7, 10, 11, 12, 2, 3, 4, 7, 8, 9, 12, 13, 14])
     np.testing.assert_equal(splits, [0, 9, 18])
コード例 #3
0
ファイル: grid_test.py プロジェクト: jackd/numba-stream
    def test_sparse_neighborhood_1d(self):
        in_shape = np.array((7, ))
        kernel_shape = np.array((3, ))
        strides = np.array((2, ))
        padding = np.array((0, ))
        p, indices, splits, out_shape = grid.sparse_neighborhood(
            in_shape, kernel_shape, strides, padding=padding)
        np.testing.assert_equal(out_shape, (3, ))
        np.testing.assert_equal(p, tuple(range(3)) * 3)
        np.testing.assert_equal(indices, [0, 1, 2, 2, 3, 4, 4, 5, 6])
        np.testing.assert_equal(splits, [0, 3, 6, 9])

        in_shape = np.array((7, ))
        kernel_shape = np.array((2, ))
        strides = np.array((2, ))
        padding = np.array((0, ))
        p, indices, splits, out_shape = grid.sparse_neighborhood(
            in_shape, kernel_shape, strides, padding=padding)
        np.testing.assert_equal(out_shape, (3, ))
        np.testing.assert_equal(p, tuple(range(2)) * 3)
        np.testing.assert_equal(indices, [0, 1, 2, 3, 4, 5])
        np.testing.assert_equal(splits, [0, 2, 4, 6])
コード例 #4
0
ファイル: neighbors_test.py プロジェクト: jackd/numba-stream
    def test_pointwise_neighbors(self):
        in_size = 1024
        out_size = 256
        grid_size = 10
        t_end = 10000
        in_times = np.random.uniform(high=t_end, size=in_size).astype(np.int64)
        in_coords = np.random.uniform(high=grid_size,
                                      size=in_size).astype(np.int64)
        in_times.sort()
        out_times = np.random.uniform(high=t_end,
                                      size=out_size).astype(np.int64)
        out_coords = np.random.uniform(high=grid_size,
                                       size=out_size).astype(np.int64)
        out_times.sort()

        partitions, indices, splits, out_shape = grid.sparse_neighborhood(
            np.array([grid_size]), np.array([1]), np.array([1]), np.array([0]))
        np.testing.assert_equal(out_shape, [grid_size])
        np.testing.assert_equal(partitions, 0)
        np.testing.assert_equal(indices, np.arange(grid_size))
        np.testing.assert_equal(splits, np.arange(grid_size + 1))

        spatial_buffer_size = 32
        actual_indices, actual_splits = neigh.compute_pointwise_neighbors(
            in_times, in_coords, out_times, out_coords, spatial_buffer_size)
        part, expected_indices, expected_splits = neigh.compute_neighbors(
            in_times,
            in_coords,
            out_times,
            out_coords,
            partitions,
            indices,
            splits,
            spatial_buffer_size,
        )
        np.testing.assert_equal(part, 0)
        np.testing.assert_equal(actual_indices, expected_indices)
        np.testing.assert_equal(actual_splits, expected_splits)
        assert len(actual_indices) > 0
コード例 #5
0
ファイル: neighbors_test.py プロジェクト: jackd/numba-stream
    def test_compute_neighbors_2d_finite(self):
        # in_coords = np.array([
        #     [0, 0],
        #     [2, 3],
        #     [1, 1],
        # ], dtype=np.int64)
        # out_coords = np.array([
        #     [0, 0],
        #     [2, 2],
        # ], dtype=np.int64)
        neigh_parts, neigh_coords, splits, out_shape = grid.sparse_neighborhood(
            np.array((3, 4)),
            np.array((3, 3)),
            strides=np.array((1, 1)),
            padding=np.array((1, 1)),
        )
        np.testing.assert_equal(out_shape, (3, 4))
        in_coords = np.array((0, 11, 5))
        out_coords = np.array((0, 11))
        in_times = np.array([0, 2, 4], dtype=np.int64)
        out_times = np.array([3, 5])
        event_duration = None
        spatial_buffer_size = 4

        partitions, indices, splits = neigh.compute_neighbors(
            in_times=in_times,
            in_coords=in_coords,
            out_times=out_times,
            out_coords=out_coords,
            grid_partitions=neigh_parts,
            grid_indices=neigh_coords,
            grid_splits=splits,
            event_duration=event_duration,
            spatial_buffer_size=spatial_buffer_size,
        )

        np.testing.assert_equal(partitions, [4, 4])
        np.testing.assert_equal(indices, [0, 1])
        np.testing.assert_equal(splits, [0, 1, 2])
コード例 #6
0
ファイル: lif.py プロジェクト: jackd/numba-stream
frame_kwargs = dict(num_frames=60)

for events, label in dataset:
    coords = events["coords"].numpy()
    time = events["time"].numpy()
    polarity = events["polarity"].numpy()

    img_data = [as_frames(coords, time, polarity, **frame_kwargs)]
    coords = grid.ravel_multi_index_transpose(coords, dims)

    sizes = [time.size]
    curr_shape = dims
    for _ in range(3):
        partitions, indices, splits, curr_shape = grid.sparse_neighborhood(
            in_shape=curr_shape,
            kernel_shape=np.array((kernel_size, kernel_size), dtype=np.int64),
            strides=np.array((stride, stride), dtype=np.int64),
            padding=np.array((padding, padding), dtype=np.int64),
        )
        # spatial_leaky_integrate_and_fire needs transposed grid
        indices, splits, partitions = transpose_csr(indices, splits,
                                                    partitions)

        time, coords = spatial_leaky_integrate_and_fire(
            times=time,
            coords=coords,
            grid_indices=indices,
            grid_splits=splits,
            decay_time=decay_time,
        )

        sizes.append(time.size)
コード例 #7
0
def create_sparse_neighborhood():
    return grid.sparse_neighborhood(in_shape, kernel_shape, strides, top_left)
コード例 #8
0
ファイル: grid.py プロジェクト: jackd/numba-stream
import matplotlib.pyplot as plt
import numpy as np
from scipy.sparse import csr_matrix

from numba_stream import grid

in_shape = np.array((4, 5), dtype=np.int64)
kernel_shape = np.array((3, 3), dtype=np.int64)
strides = np.array((2, 2), dtype=np.int64)
padding = np.array((1, 1), dtype=np.int64)

p, indices, splits, shape = grid.sparse_neighborhood(
    in_shape, kernel_shape, strides, padding
)
print(shape)
print(indices)
print(splits)
print(indices.shape)
print(splits.shape)

values = np.ones_like(indices)
mat = csr_matrix((values, indices, splits))


plt.spy(mat)
plt.show()