def testModPow(self): self.assertRaises(number.NegativeNumberNotAllowedException, number.modPow, 1, 1, -1); self.assertRaises(number.NegativeNumberNotAllowedException, number.modPow, 1, -1, 1); self.assertRaises(number.NegativeNumberNotAllowedException, number.modPow, -1, 1, 1); self.assertEquals(0, number.modPow(2, 2, 0)) self.assertEquals(1, number.modPow(2, 0, 2)) self.assertEquals(0, number.modPow(0, 2, 2)) self.assertEquals(1, number.modPow(2, 1092, 1093 ** 2))
def primes(n): # 1 if number.integralPower(n): return 0 # 2 r = 2 # 3 while r < n: # 4 if number.gcd(n, r) != 1: return 0 # 5 if r in number.SMALL_PRIMES: # 6 factors = number.factor(r - 1) if len(factors) == 0: q = 0 # hack else: q = factors[-1] # 7 if (q >= 4 * math.sqrt(r) * number.lg(n)) and (number.modPow(n, (r - 1) / q, r) != 1): # 8 break # 9 r = r + 1 # 10 print "r for ", n, ":", r return r # 11 #for a in range(1, int(2 * math.sqrt(r) * number.lg(n)) + 2)): # 12 #poly = [-1] + [0] * (r - 1) + [1] #lhs = polynomial.modPow([-a, 1], n, poly) #rhs = polynomial.mod([-a] + [0] * (n - 1) + [1], poly) #if lhs != rhs: # return 0 # 13 return 1