コード例 #1
0
    def test_default_generator():
        step_gen = nd.MaxStepGenerator(num_steps=10)
        h = np.array([h for h in step_gen(0)])

        desired = 2.0 * 2.0**(-np.arange(10) + 0)

        assert_array_almost_equal((h - desired) / desired, 0)
コード例 #2
0
def test_max_step_generator_with_base_step01():
    desired = 0.1
    step_gen = nd.MaxStepGenerator(base_step=desired, num_steps=1, offset=0)
    methods = ['forward', 'backward', 'central', 'complex']
    lengths = [2, 2, 1, 1]
    for n, method in zip(lengths, methods):
        h = [h for h in step_gen(0, method=method)]
        assert_array_almost_equal((h[0] - desired) / desired, 0)
        assert_equal(n, len(h))
コード例 #3
0
    def test_run_hamiltonian(self):
        # Important to restrict the step in order to avoid the
        # discontinutiy at x=[0,0] of the hamiltonian

        for method in ['central', 'complex']:
            step = nd.MaxStepGenerator(base_step=1e-4)
            hessian = nd.Hessian(None, step=step, method=method)
            h, _error_estimate, true_h = run_hamiltonian(hessian,
                                                         verbose=False)
            assert (np.abs((h - true_h) / true_h) < 1e-4).all()
コード例 #4
0
 def test_default_base_step():
     step_gen = nd.MaxStepGenerator(num_steps=1, offset=0)
     h = [h for h in step_gen(0)]
     desired = 2.0
     assert_array_almost_equal((h[0] - desired) / desired, 0)