def __pow__(self, other): shape = self.shape if len(shape) != 2 or shape[0] != shape[1]: raise TypeError, "matrix is not square" if type(other) in (type(1), type(1L)): if other==0: return matrix(N.identity(shape[0])) if other<0: x = self.I other=-other else: x=self result = x if other <= 3: while(other>1): result=result*x other=other-1 return result # binary decomposition to reduce the number of Matrix # Multiplies for other > 3. beta = binary_repr(other) t = len(beta) Z,q = x.copy(),0 while beta[t-q-1] == '0': Z *= Z q += 1 result = Z.copy() for k in range(q+1,t): Z *= Z if beta[t-k-1] == '1': result *= Z return result
def __pow__(self, other): shape = self.shape if len(shape) != 2 or shape[0] != shape[1]: raise TypeError, "matrix is not square" if type(other) in (type(1), type(1L)): if other==0: return matrix(N.identity(shape[0])) if other<0: x = self.I other=-other else: x=self result = x if other <= 3: while(other>1): result=result*x other=other-1 return result # binary decomposition to reduce the number of Matrix # Multiplies for other > 3. beta = binary_repr(other) t = len(beta) Z,q = x.copy(),0 while beta[t-q-1] == '0': Z *= Z q += 1 result = Z.copy() for k in range(q+1,t): Z *= Z if beta[t-k-1] == '1': result *= Z return result else: raise TypeError, "exponent must be an integer"
def matrix_power(M,n): """Raise a square matrix to the (integer) power n. For positive integers n, the power is computed by repeated matrix squarings and matrix multiplications. If n=0, the identity matrix of the same type as M is returned. If n<0, the inverse is computed and raised to the exponent. Parameters ---------- M : array-like Must be a square array (that is, of dimension two and with equal sizes). n : integer The exponent can be any integer or long integer, positive negative or zero. Returns ------- M to the power n The return value is a an array the same shape and size as M; if the exponent was positive or zero then the type of the elements is the same as those of M. If the exponent was negative the elements are floating-point. Raises ------ LinAlgException If the matrix is not numerically invertible, an exception is raised. See Also -------- The matrix() class provides an equivalent function as the exponentiation operator. Examples -------- >>> matrix_power(array([[0,1],[-1,0]]),10) array([[-1, 0], [ 0, -1]]) """ if len(M.shape) != 2 or M.shape[0] != M.shape[1]: raise ValueError("input must be a square array") if not issubdtype(type(n),int): raise TypeError("exponent must be an integer") from numpy.linalg import inv if n==0: M = M.copy() M[:] = identity(M.shape[0]) return M elif n<0: M = inv(M) n *= -1 result = M if n <= 3: for _ in range(n-1): result=N.dot(result,M) return result # binary decomposition to reduce the number of Matrix # multiplications for n > 3. beta = binary_repr(n) Z,q,t = M,0,len(beta) while beta[t-q-1] == '0': Z = N.dot(Z,Z) q += 1 result = Z for k in range(q+1,t): Z = N.dot(Z,Z) if beta[t-k-1] == '1': result = N.dot(result,Z) return result
def matrix_power(M,n): """ Raise a square matrix to the (integer) power n. For positive integers n, the power is computed by repeated matrix squarings and matrix multiplications. If n=0, the identity matrix of the same type as M is returned. If n<0, the inverse is computed and raised to the exponent. Parameters ---------- M : array_like Must be a square array (that is, of dimension two and with equal sizes). n : integer The exponent can be any integer or long integer, positive negative or zero. Returns ------- M to the power n The return value is a an array the same shape and size as M; if the exponent was positive or zero then the type of the elements is the same as those of M. If the exponent was negative the elements are floating-point. Raises ------ LinAlgException If the matrix is not numerically invertible, an exception is raised. See Also -------- The matrix() class provides an equivalent function as the exponentiation operator. Examples -------- >>> np.linalg.matrix_power(np.array([[0,1],[-1,0]]),10) array([[-1, 0], [ 0, -1]]) """ if len(M.shape) != 2 or M.shape[0] != M.shape[1]: raise ValueError("input must be a square array") if not issubdtype(type(n),int): raise TypeError("exponent must be an integer") from numpy.linalg import inv if n==0: M = M.copy() M[:] = identity(M.shape[0]) return M elif n<0: M = inv(M) n *= -1 result = M if n <= 3: for _ in range(n-1): result=N.dot(result,M) return result # binary decomposition to reduce the number of Matrix # multiplications for n > 3. beta = binary_repr(n) Z,q,t = M,0,len(beta) while beta[t-q-1] == '0': Z = N.dot(Z,Z) q += 1 result = Z for k in range(q+1,t): Z = N.dot(Z,Z) if beta[t-k-1] == '1': result = N.dot(result,Z) return result