コード例 #1
0
 def __pow__(self, other):
     shape = self.shape
     if len(shape) != 2 or shape[0] != shape[1]:
         raise TypeError, "matrix is not square"
     if type(other) in (type(1), type(1L)):
         if other==0:
             return matrix(N.identity(shape[0]))
         if other<0:
             x = self.I
             other=-other
         else:
             x=self
         result = x
         if other <= 3:
             while(other>1):
                 result=result*x
                 other=other-1
             return result
         # binary decomposition to reduce the number of Matrix
         #  Multiplies for other > 3.
         beta = binary_repr(other)
         t = len(beta)
         Z,q = x.copy(),0
         while beta[t-q-1] == '0':
             Z *= Z
             q += 1
         result = Z.copy()
         for k in range(q+1,t):
             Z *= Z
             if beta[t-k-1] == '1':
                 result *= Z
         return result
コード例 #2
0
 def __pow__(self, other):
     shape = self.shape
     if len(shape) != 2 or shape[0] != shape[1]:
         raise TypeError, "matrix is not square"
     if type(other) in (type(1), type(1L)):
         if other==0:
             return matrix(N.identity(shape[0]))
         if other<0:
             x = self.I
             other=-other
         else:
             x=self
         result = x
         if other <= 3:
             while(other>1):
                 result=result*x
                 other=other-1
             return result
         # binary decomposition to reduce the number of Matrix
         #  Multiplies for other > 3.
         beta = binary_repr(other)
         t = len(beta)
         Z,q = x.copy(),0
         while beta[t-q-1] == '0':
             Z *= Z
             q += 1
         result = Z.copy()
         for k in range(q+1,t):
             Z *= Z
             if beta[t-k-1] == '1':
                 result *= Z
         return result
     else:
         raise TypeError, "exponent must be an integer"
コード例 #3
0
ファイル: defmatrix.py プロジェクト: 8848/Pymol-script-repo
def matrix_power(M,n):
    """Raise a square matrix to the (integer) power n.

    For positive integers n, the power is computed by repeated matrix
    squarings and matrix multiplications. If n=0, the identity matrix
    of the same type as M is returned. If n<0, the inverse is computed
    and raised to the exponent.

    Parameters
    ----------
    M : array-like
        Must be a square array (that is, of dimension two and with
        equal sizes).
    n : integer
        The exponent can be any integer or long integer, positive
        negative or zero.

    Returns
    -------
    M to the power n
        The return value is a an array the same shape and size as M;
        if the exponent was positive or zero then the type of the
        elements is the same as those of M. If the exponent was negative
        the elements are floating-point.

    Raises
    ------
    LinAlgException
        If the matrix is not numerically invertible, an exception is raised.

    See Also
    --------
    The matrix() class provides an equivalent function as the exponentiation
    operator.

    Examples
    --------
    >>> matrix_power(array([[0,1],[-1,0]]),10)
    array([[-1,  0],
           [ 0, -1]])
    """
    if len(M.shape) != 2 or M.shape[0] != M.shape[1]:
        raise ValueError("input must be a square array")
    if not issubdtype(type(n),int):
        raise TypeError("exponent must be an integer")

    from numpy.linalg import inv

    if n==0:
        M = M.copy()
        M[:] = identity(M.shape[0])
        return M
    elif n<0:
        M = inv(M)
        n *= -1

    result = M
    if n <= 3:
        for _ in range(n-1):
            result=N.dot(result,M)
        return result

    # binary decomposition to reduce the number of Matrix
    # multiplications for n > 3.
    beta = binary_repr(n)
    Z,q,t = M,0,len(beta)
    while beta[t-q-1] == '0':
        Z = N.dot(Z,Z)
        q += 1
    result = Z
    for k in range(q+1,t):
        Z = N.dot(Z,Z)
        if beta[t-k-1] == '1':
            result = N.dot(result,Z)
    return result
コード例 #4
0
def matrix_power(M,n):
    """
    Raise a square matrix to the (integer) power n.

    For positive integers n, the power is computed by repeated matrix
    squarings and matrix multiplications. If n=0, the identity matrix
    of the same type as M is returned. If n<0, the inverse is computed
    and raised to the exponent.

    Parameters
    ----------
    M : array_like
        Must be a square array (that is, of dimension two and with
        equal sizes).
    n : integer
        The exponent can be any integer or long integer, positive
        negative or zero.

    Returns
    -------
    M to the power n
        The return value is a an array the same shape and size as M;
        if the exponent was positive or zero then the type of the
        elements is the same as those of M. If the exponent was negative
        the elements are floating-point.

    Raises
    ------
    LinAlgException
        If the matrix is not numerically invertible, an exception is raised.

    See Also
    --------
    The matrix() class provides an equivalent function as the exponentiation
    operator.

    Examples
    --------
    >>> np.linalg.matrix_power(np.array([[0,1],[-1,0]]),10)
    array([[-1,  0],
           [ 0, -1]])

    """
    if len(M.shape) != 2 or M.shape[0] != M.shape[1]:
        raise ValueError("input must be a square array")
    if not issubdtype(type(n),int):
        raise TypeError("exponent must be an integer")

    from numpy.linalg import inv

    if n==0:
        M = M.copy()
        M[:] = identity(M.shape[0])
        return M
    elif n<0:
        M = inv(M)
        n *= -1

    result = M
    if n <= 3:
        for _ in range(n-1):
            result=N.dot(result,M)
        return result

    # binary decomposition to reduce the number of Matrix
    # multiplications for n > 3.
    beta = binary_repr(n)
    Z,q,t = M,0,len(beta)
    while beta[t-q-1] == '0':
        Z = N.dot(Z,Z)
        q += 1
    result = Z
    for k in range(q+1,t):
        Z = N.dot(Z,Z)
        if beta[t-k-1] == '1':
            result = N.dot(result,Z)
    return result