コード例 #1
0
ファイル: mlab.py プロジェクト: jtomase/matplotlib
def norm(x, y=2):
    """
    Norm of a matrix or a vector according to Matlab.
    The description is taken from Matlab:
    
        For matrices...
          NORM(X) is the largest singular value of X, max(svd(X)).
          NORM(X,2) is the same as NORM(X).
          NORM(X,1) is the 1-norm of X, the largest column sum,
                          = max(sum(abs((X)))).
          NORM(X,inf) is the infinity norm of X, the largest row sum,
                          = max(sum(abs((X')))).
          NORM(X,'fro') is the Frobenius norm, sqrt(sum(diag(X'*X))).
          NORM(X,P) is available for matrix X only if P is 1, 2, inf or 'fro'.
     
        For vectors...
          NORM(V,P) = sum(abs(V).^P)^(1/P).
          NORM(V) = norm(V,2).
          NORM(V,inf) = max(abs(V)).
          NORM(V,-inf) = min(abs(V)).
    """

    x = numerix.asarray(x)
    if MLab.rank(x) == 2:
        if y == 2:
            return MLab.max(MLab.svd(x)[1])
        elif y == 1:
            return MLab.max(MLab.sum(numerix.absolute((x))))
        elif y == 'inf':
            return MLab.max(MLab.sum(numerix.absolute((MLab.transpose(x)))))
        elif y == 'fro':
            return MLab.sqrt(
                MLab.sum(
                    MLab.diag(numerix.matrixmultiply(MLab.transpose(x), x))))
        else:
            verbose.report_error('Second argument not permitted for matrices')
            return None

    else:
        if y == 'inf':
            return MLab.max(numerix.absolute(x))
        elif y == '-inf':
            return MLab.min(numerix.absolute(x))
        else:
            return numerix.power(
                MLab.sum(numerix.power(numerix.absolute(x), y)), 1 / float(y))
コード例 #2
0
def norm(x,y=2):
    """
    Norm of a matrix or a vector according to Matlab.
    The description is taken from Matlab:
    
        For matrices...
          NORM(X) is the largest singular value of X, max(svd(X)).
          NORM(X,2) is the same as NORM(X).
          NORM(X,1) is the 1-norm of X, the largest column sum,
                          = max(sum(abs((X)))).
          NORM(X,inf) is the infinity norm of X, the largest row sum,
                          = max(sum(abs((X')))).
          NORM(X,'fro') is the Frobenius norm, sqrt(sum(diag(X'*X))).
          NORM(X,P) is available for matrix X only if P is 1, 2, inf or 'fro'.
     
        For vectors...
          NORM(V,P) = sum(abs(V).^P)^(1/P).
          NORM(V) = norm(V,2).
          NORM(V,inf) = max(abs(V)).
          NORM(V,-inf) = min(abs(V)).
    """

    x = numerix.asarray(x)
    if MLab.rank(x)==2:
        if y==2:
            return MLab.max(MLab.svd(x)[1])
        elif y==1:
            return MLab.max(MLab.sum(numerix.absolute((x))))
        elif y=='inf':
            return MLab.max(MLab.sum(numerix.absolute((MLab.transpose(x)))))
        elif y=='fro':
            return MLab.sqrt(MLab.sum(MLab.diag(numerix.matrixmultiply(MLab.transpose(x),x))))
        else:
            verbose.report_error('Second argument not permitted for matrices')
            return None
        
    else:
        if y == 'inf':
            return MLab.max(numerix.absolute(x))
        elif y == '-inf':
            return MLab.min(numerix.absolute(x))
        else:
            return numerix.power(MLab.sum(numerix.power(numerix.absolute(x),y)),1/float(y))