コード例 #1
0
ファイル: q1client.py プロジェクト: caijim/Repo
def reverse_3(input, original):
    original= array(original)
#ideally, we would have a recursive function that 
#would calculate four indices based on the top left corner
#and then calculate the rest, but I take the simple route 
    noise = input - original
    smallsquare = noise[:noise.shape[0]/float(2),:noise.shape[1]/float(2)]
    byrow = append(smallsquare, smallsquare, 0)
    bycolumnrow = append(byrow, byrow, 1)
    clean = input-bycolumnrow
    return clean
コード例 #2
0
def get_data_timeline(out_path,err_path):

    f = open(out_path, "r")
    max_time=0
    for line in f:
        arr=line.split(",")
        if("Size:" in arr[0]):
            # print(arr)
            if(RepresentsFloat(arr[3].replace('sec=','')) == True):
                max_time=float(arr[3].replace('sec=',''))
            break

    f.close()

    print(max_time)

    f = open(err_path, "r")
    time_line=np.arange(0, int(max_time)+2, 0.5)
    bandwith_list=[]
    count=len(time_line)
    for line in f:
        arr=line.split(" ")
        if( RepresentsInt(arr[0]) and count!=0):
            bandwith_list=  append(bandwith_list,float(arr[8]))
            count-=1
        if(count==0):
            break


    f.close()
    print(bandwith_list)
    return time_line,bandwith_list
コード例 #3
0
def matlab2PointCorrespondences(filename):
    '''Loads and converts the point correspondences saved
    by the matlab camera calibration tool'''
    from numpy.lib.io import loadtxt, savetxt
    from numpy.lib.function_base import append
    points = loadtxt(filename, delimiter=',')
    savetxt(
        utils.removeExtension(filename) + '-point-correspondences.txt',
        append(points[:, :2].T, points[:, 3:].T, axis=0))
コード例 #4
0
ファイル: LinePlot.py プロジェクト: germank/training-monitor
 def add_point(self, y, x=None, z=1):
     y = float(y)
     self.moving_history.append(y)
     self.moving_history = self.moving_history[-self.smoothing:]
     print(self.moving_history)
     y = mean(self.moving_history)
     print y
     if not x:
         if z in self.line:
             x = self.line[z].get_xdata()[-1] + 1
         else:
             x = 1
     print x
     try:
         self.line[z].set_xdata(append(self.line[z].get_xdata(), x))
         self.line[z].set_ydata(append(self.line[z].get_ydata(), y))
     except KeyError:
         self.line[z], = self.axes.plot([x],[y], linestyle=str(self.ls), marker=str(self.marker))
コード例 #5
0
ファイル: cvutils.py プロジェクト: Transience/buffer
def matlab2PointCorrespondences(filename):
    """Loads and converts the point correspondences saved 
    by the matlab camera calibration tool"""
    from numpy.lib.io import loadtxt, savetxt
    from numpy.lib.function_base import append

    points = loadtxt(filename, delimiter=",")
    savetxt(
        utils.removeExtension(filename) + "-point-correspondences.txt", append(points[:, :2].T, points[:, 3:].T, axis=0)
    )
コード例 #6
0
def get_data_timeline(out_path, err_path):

    f = open(out_path, "r")
    max_time = 0
    for line in f:
        line = line.strip()
        arr = line.split(",")

        if ("Size:" in arr[0]):
            print(arr)
            if (RepresentsFloat(arr[3].replace('sec=', '')) == True):
                max_time = float(arr[3].replace('sec=', ''))
            break

    f.close()

    print(max_time)

    f = open(err_path, "r")
    time_line = np.arange(0, int(max_time) + 2, 0.5)
    bandwith_list = []
    count = len(time_line)
    id_mem_bandwidth = 12
    id_l3_cache = 8
    for line in f:
        arr = line.split(" ")
        if (RepresentsInt(arr[0]) and count != 0):
            if (TEST == "MEM"):
                bandwith_list = append(bandwith_list,
                                       float(arr[id_mem_bandwidth]))
            elif (TEST == "L3"):
                bandwith_list = append(bandwith_list, float(arr[id_l3_cache]))
            count -= 1
        if (count == 0):
            break

    f.close()
    # print(count)
    print(bandwith_list)
    return time_line, bandwith_list
コード例 #7
0
ファイル: main.py プロジェクト: Transience/buffer
def projectArray(homography, points):
    from numpy.core import dot
    from numpy.lib.function_base import append

    if points.shape[0] != 2:
        raise Exception('points of dimension {0} {1}'.format(points.shape[0], points.shape[1]))

    if (homography is not None) and homography.size>0:
        augmentedPoints = append(points,[[1]*points.shape[1]], 0)
        prod = dot(homography, augmentedPoints)
        return prod[0:2]/prod[2]
    else:
        return points
コード例 #8
0
def projectArray(homography, points):
    '''Returns the coordinates of the projected points (format 2xN points)
    through homography'''
    from numpy.core import dot
    from numpy.core.multiarray import array
    from numpy.lib.function_base import append

    if points.shape[0] != 2:
        raise Exception('points of dimension {0} {1}'.format(
            points.shape[0], points.shape[1]))

    if (homography != None) and homography.size > 0:
        augmentedPoints = append(points, [[1] * points.shape[1]], 0)
        prod = dot(homography, augmentedPoints)
        return prod[0:2] / prod[2]
    else:
        return p
コード例 #9
0
ファイル: cvutils.py プロジェクト: Transience/buffer
def projectArray(homography, points):
    """Returns the coordinates of the projected points through homography
    (format: array 2xN points)"""
    from numpy.core import dot
    from numpy.core.multiarray import array
    from numpy.lib.function_base import append

    if points.shape[0] != 2:
        raise Exception("points of dimension {0} {1}".format(points.shape[0], points.shape[1]))

    if (homography is not None) and homography.size > 0:
        # alternatively, on could use cv2.convertpointstohomogeneous and other conversion to/from homogeneous coordinates
        augmentedPoints = append(points, [[1] * points.shape[1]], 0)
        prod = dot(homography, augmentedPoints)
        return prod[0:2] / prod[2]
    else:
        return points
コード例 #10
0
ファイル: cycle.py プロジェクト: Xifax/muscale
def modelling_cycle():

#--------------- initialization -------------------#
#    initial_data = test_data
    initial_data = test_data_one

#    fig_init = plt.figure()
#    fig_init.canvas.manager.set_window_title('Initial data')
#    plt.plot(initial_data, color='g')

    wavelet_families = pywt.families()
    print 'Wavelet families:', ', '.join(wavelet_families)
    wavelet_family = wavelet_families[4]
    selected_wavelet = pywt.wavelist(wavelet_family)[0]
    wavelet = pywt.Wavelet(selected_wavelet)
    print 'Selected wavelet:', selected_wavelet

    max_level = pywt.swt_max_level(len(initial_data))
#    decomposition_level = max_level / 2
    decomposition_level = 3
    print 'Max level:', max_level, '\t Decomposition level:', decomposition_level

#--------------- decomposition -------------------#
    w_initial_coefficients = pywt.swt(initial_data, wavelet, level=decomposition_level)
    w_selected_coefficiets = select_levels_from_swt(w_initial_coefficients)
    w_node_coefficients = select_node_levels_from_swt(w_initial_coefficients)      #something terribly wrong here, yet the rest works!

#------------------ threshold --------------------#

    threshold = measure_threshold(w_initial_coefficients)

    w_threshold_coeff = w_initial_coefficients[:]
    apply_threshold(w_threshold_coeff)
    plot_initial_updated(w_initial_coefficients, w_threshold_coeff)

#    plt.figure()
#    for coeff in w_selected_coefficiets:
#        plt.plot(coeff)
#    plt.figure()
#    for coeff in w_node_coefficients:
#        plt.plot(coeff)
#    plt.show()

#--------------- modification -------------------#
    r = R()

    w_new_coefficients = [0] * len(w_selected_coefficiets)
    for index in range(0, len(w_selected_coefficiets)):
        r.i_data = w_selected_coefficiets[index]

        r('hw <- HoltWinters( ts(i_data, frequency = 12), gamma = TRUE )')
        r('pred <- predict(hw, 50, prediction.interval = TRUE)')

        w_new_coefficients[index] = append(w_selected_coefficiets[index], r.pred[:,0])
        index += 1

    w_new_node_coefficients = [0] * len(w_node_coefficients)
    for index in range(0, len(w_node_coefficients)):
        r.i_data = w_node_coefficients[index]

        r('hw <- HoltWinters( ts(i_data, frequency = 12), gamma = TRUE )')
        r('pred <- predict(hw, 50, prediction.interval = TRUE)')

        w_new_node_coefficients[index] = append(w_node_coefficients[index], r.pred[:,0])
        index += 1
#----

#    plt.figure()
#    for coeff in w_new_coefficients:
#        plt.plot(coeff)
#    plt.figure()
#    for coeff in w_new_node_coefficients:
#        plt.plot(coeff)
#    plt.show()

#--------------- reconstruction  -------------------#
#    wInitialwithUpdated_Nodes = update_node_levels_swt(w_initial_coefficients, w_new_node_coefficients)

#    plot_initial_updated(w_initial_coefficients, w_new_node_coefficients, True)
#    plot_initial_updated(w_initial_coefficients, wInitialwithUpdated_Nodes) (!)

#    plt.figure()
#    for dyad in wInitialwithUpdated_Nodes:
#        plt.plot(dyad[0])
#        plt.plot(dyad[1])
#
#    plt.figure()
#    for dyad in w_initial_coefficients:
#        plt.plot(dyad[0])
#        plt.plot(dyad[1])
#
#    plt.show()

#    w_updated_coefficients = update_selected_levels_swt(w_initial_coefficients, w_selected_coefficiets)
#    w_updated_coefficients = update_selected_levels_swt(w_initial_coefficients, w_new_coefficients)


#----
#    w_updated_coefficients = update_swt(w_initial_coefficients, w_selected_coefficiets, w_node_coefficients)

    w_updated_coefficients_nodes = update_swt(w_initial_coefficients, w_new_coefficients, w_new_node_coefficients)
    w_updated_coefficients = update_selected_levels_swt(w_initial_coefficients, w_new_coefficients)

    plot_initial_updated(w_initial_coefficients, w_updated_coefficients_nodes)
    plot_initial_updated(w_initial_coefficients, w_updated_coefficients)

    reconstructed_Stationary_nodes = iswt(w_updated_coefficients_nodes, selected_wavelet)
    reconstructed_Stationary = iswt(w_updated_coefficients, selected_wavelet)

    fig_sta_r = plt.figure()
    fig_sta_r.canvas.manager.set_window_title('SWT reconstruction')
    plt.plot(reconstructed_Stationary)

    fig_sta_r_n = plt.figure()
    fig_sta_r_n.canvas.manager.set_window_title('SWT reconstruction (nodes)')
    plt.plot(reconstructed_Stationary_nodes)

    plt.show()
コード例 #11
0
ファイル: cycle.py プロジェクト: Xifax/muscale
def __modelling_cycle():

    initial_data = test_data

    fig_init = plt.figure()
    fig_init.canvas.manager.set_window_title('Initial data')
    plt.plot(initial_data, color='g')
#--------------- wavelet decomposition -------------------#
    decomposition_level = 2
    wavelet_families = pywt.families()
    wavelet_family = wavelet_families[0]
    selected_wavelet = pywt.wavelist(wavelet_family)[0]

    wavelet = pywt.Wavelet(selected_wavelet)  #NB: taking first variant of wavelet (e.g. haar1)
    # discrete (non stationary) multilevel decomposition
    wCoefficients_Discrete = pywt.wavedec(initial_data, wavelet, level=decomposition_level) #NB: output length also depends on wavelet type
    # stationary (Algorithme à trous ~ does not decimate coefficients at every transformation level) multilevel decomposition
    wCoefficients_Stationary = pywt.swt(initial_data, wavelet, level=decomposition_level)

    fig_discrete = plt.figure(); n_coeff = 1
    fig_discrete.canvas.manager.set_window_title('Discrete decomposition [ ' + str(decomposition_level) + ' level(s) ]') 
    for coeff in wCoefficients_Discrete:
#        print coeff
        fig_discrete.add_subplot(len(wCoefficients_Discrete), 1, n_coeff); n_coeff += 1
        plt.plot(coeff)

    fig_stationary = plt.figure(); n_coeff = 1; rows = 0
    fig_stationary.canvas.manager.set_window_title('Stationary decomposition [ ' + str(decomposition_level) + ' level(s) ]')
    for item in wCoefficients_Stationary: rows += len(item)
    i = 0; j = 0    # tree coeffs
    for coeff in wCoefficients_Stationary:
        for subcoeff in coeff:
            print i, j
#            print subcoeff
            fig_stationary.add_subplot(rows, 1, n_coeff); n_coeff += 1
            plt.plot(subcoeff)
            j += 1
        i += 1

    plt.show()

    fig_stat_sum = plt.figure(); n_coeff = 1
    fig_stat_sum.canvas.manager.set_window_title('SWT sum by levels [ ' + str(decomposition_level) + ' level(s) ]')
    for coeff in wCoefficients_Stationary:
        sum = coeff[0] + coeff[1]
        fig_stat_sum.add_subplot(len(wCoefficients_Discrete), 1, n_coeff); n_coeff += 1
        plt.plot(sum)
        
#    plt.show()

#------------------ modelling by level -------------------#

    r = R()
    r.i_data = initial_data     # or r['i_data'] = initial_data

    ### Holt-Winters ###
    # non-seasonal Holt-Winters
    print r('hw <- HoltWinters( i_data, gamma = FALSE )')

    # seasonal Holt-Winters
    r.freq = 4  #series sampling (month, days, years, etc)
#    print r( 'hw <- HoltWinters( ts ( %s, frequency = %s ) )' % ( Str4R(r.i_data), Str4R(r.freq) ) )
#    print r( 'hw <- HoltWinters( ts ( %s, frequency = %s, start = c(1,1) ) )' % ( Str4R(r.i_data), Str4R(r.freq) ) )

    # resulting Square Estimation Sum
    print r.hw['SSE']

    # bruteforce frequency search
#    print 'test ahead:'
#    sse_dict = {}
#    for i in xrange(2, 50):
#        r.freq = i
##        r( 'hw <- HoltWinters( ts ( %s, frequency = %s, start = c(1,1) ) )' % ( Str4R(r.i_data), Str4R(r.freq) ) )
#        r( 'hw <- HoltWinters( ts ( %s, frequency = %s ) )' % ( Str4R(r.i_data), Str4R(r.freq) ) )
#        print r.hw['SSE']
#        sse_dict[r.hw['SSE']] = i; i += 1
#    print 'Resulting:'
#    m = min(sse_dict.keys())
#    print sse_dict[m], m

    fig = plt.figure()
    fig.canvas.manager.set_window_title('Holt-winters model')
    ax = fig.add_subplot(111)
#    ax.plot(r.hw['fitted'][:,0])   # the colums are: xhat, level, trend
#    plt.show()

    # forecast length
    r.steps_ahead = 50
#    print r('pred <- predict(%s, %s, prediction.interval = TRUE)' % ( Str4R(r.hw), Str4R(r.steps_ahead)) )
#    print r( 'pred <- predict(hw, %s, prediction.interval = TRUE)', Str4R(r.steps_ahead) )
    print r( 'pred <- predict(hw, 50, prediction.interval = TRUE)')
#    plt.plot(r.pred)
    ax.plot(initial_data)
    ax.plot(append(r.hw['fitted'][:,0], r.pred[:,0]))   # concatenating reconstructed model and resulting forecast

#    plt.show()

#------------------ reconstruction -------------------#
    # multilevel idwt
    reconstructed_Discrete = pywt.waverec(wCoefficients_Discrete, selected_wavelet)
    fig_dis_r = plt.figure()
    fig_dis_r.canvas.manager.set_window_title('DWT reconstruction')
    plt.plot(reconstructed_Discrete)
#    plt.show()

    # multilevel stationary
    reconstructed_Stationary = iswt(wCoefficients_Stationary, selected_wavelet)

    fig_sta_r = plt.figure()
    fig_sta_r.canvas.manager.set_window_title('SWT reconstruction')
    plt.plot(reconstructed_Stationary)
    plt.show()
    print 'end'
コード例 #12
0
            max_time=float(arr[3].replace('sec=',''))
        break

f.close()

print(max_time)


f = open(res_path, "r")
time_line=np.arange(0, int(max_time+1), 0.5)
bandwith_list=[]

for line in f:
    arr=line.split(" ")
    if( RepresentsInt(arr[0])):
        bandwith_list=  append(bandwith_list,float(arr[8]))
        
f.close()
print(time_line)
print(bandwith_list)


plt.ylabel("L3 load bandwidth [MBytes/s]")
plt.xlabel("Time")
# plt.yscale('log')
plt.plot(time_line, bandwith_list, label="membench")

plt.legend()
plt.savefig('plot/plot_bandwith.png')
plt.show()
コード例 #13
0
            max_time = float(arr[3].replace('sec=', ''))
        break
f.close()

print(max_time)

f = open(res_path, "r")
time_line = np.arange(0, int(max_time + 2), 0.5)
bandwith_list = []
id_mem_bandwidth = 12
id_l3_cache = 8
for line in f:
    arr = line.split(" ")
    if (RepresentsInt(arr[0])):
        if (TEST == "MEM"):
            bandwith_list = append(bandwith_list, float(arr[id_mem_bandwidth]))
        elif (TEST == "L3"):
            bandwith_list = append(bandwith_list, float(arr[id_l3_cache]))

f.close()

# print(time_line)
bandwith_list = np.append(bandwith_list,
                          np.zeros(len(time_line) - len(bandwith_list)))
print(len(time_line))
print(len(bandwith_list))
plt.ylabel(TEST + " bandwidth [MBytes/s]")
plt.xlabel("Time")
# plt.yscale('log')
plt.plot(time_line, bandwith_list, label="membench")