コード例 #1
0
ファイル: test_shape_base.py プロジェクト: ContinuumIO/numpy
 def test_1D_array(self):
     a = np.array([1, 2, 3, 4])
     try:
         vsplit(a, 2)
         assert_(0)
     except ValueError:
         pass
コード例 #2
0
ファイル: lpcStartPoints.py プロジェクト: drbenmorgan/lpcm
 def _removeNonTracklikeClusterCenters(self):
   '''NOTE : Much of this code is copied from LPCMImpl.followXSingleDirection (factor out?)
   '''
   labels = self._meanShift.labels_
   labels_unique = unique(labels)
   cluster_centers = self._meanShift.cluster_centers_
   rsp = lpcRandomStartPoints()
   cluster_representatives = []
   for k in range(len(labels_unique)):
     cluster_members = labels == k
     cluster_center = cluster_centers[k]
     cluster = self._Xi[cluster_members,:]
     mean_sub = cluster - cluster_center 
     cov_x = dot(transpose(mean_sub), mean_sub) 
     eigen_cov = eigh(cov_x)
     sorted_eigen_cov = zip(eigen_cov[0],map(ravel,vsplit(eigen_cov[1].transpose(),len(eigen_cov[1]))))
     sorted_eigen_cov.sort(key = lambda elt: elt[0], reverse = True)   
     rho = sorted_eigen_cov[1][0] / sorted_eigen_cov[0][0] #Ratio of two largest eigenvalues   
     if rho < self._lpcParameters['rho_threshold']:
       cluster_representatives.append(cluster_center)
     else: #append a random element of the cluster
       random_cluster_element = rsp(cluster, 1)[0]
       cluster_representatives.append(random_cluster_element)
   
   return array(cluster_representatives)
コード例 #3
0
ファイル: test_shape_base.py プロジェクト: ContinuumIO/numpy
 def test_2D_array(self):
     a = np.array([[1, 2, 3, 4],
               [1, 2, 3, 4]])
     res = vsplit(a, 2)
     desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])]
     compare_results(res, desired)
コード例 #4
0
ファイル: lpc.py プロジェクト: epp-warwick/lpcm
 def _followxSingleDirection(  self, 
                               x, 
                               direction = Direction.FORWARD,
                               forward_curve = None,
                               last_eigenvector = None, 
                               weights = 1.):
   '''Generates a partial lpc curve dictionary from the start point, x.
   Arguments
   ---------
   x : 1-dim, length m, numpy.array of floats, start point for the algorithm when m is dimension of feature space
   
   direction :  bool, proceeds in Direction.FORWARD or Direction.BACKWARD from this point (just sets sign for first eigenvalue) 
   
   forward_curve : dictionary as returned by this function, is used to detect crossing of the curve under construction with a
       previously constructed curve
       
   last_eigenvector : 1-dim, length m, numpy.array of floats, a unit vector that defines the initial direction, relative to
       which the first eigenvector is biased and initial cos_neu_neu is calculated  
       
   weights : 1-dim, length n numpy.array of observation weights (can also be used to exclude
       individual observations from the computation by setting their weight to zero.),
       where n is the number of feature points 
   '''
   x0 = copy(x)
   N = self.Xi.shape[0]
   d = self.Xi.shape[1]
   it = self._lpcParameters['it']
   h = array(self._lpcParameters['h'])
   t0 = self._lpcParameters['t0']
   rho0 = self._lpcParameters['rho0']
   
   save_xd = empty((it,d))
   eigen_vecd = empty((it,d))
   c0 = ones(it)
   cos_alt_neu = ones(it)
   cos_neu_neu = ones(it)    
   lamb = empty(it) #NOTE this is named 'lambda' in the original R code
   rho = zeros(it)
   high_rho_points = empty((0,d))    
   count_points = 0
   
   for i in range(it):
     kernel_weights = self._kernd(self.Xi, x0, c0[i]*h) * weights
     mu_x = average(self.Xi, axis = 0, weights = kernel_weights)
     sum_weights = sum(kernel_weights)
     mean_sub = self.Xi - mu_x 
     cov_x = dot( dot(transpose(mean_sub), numpy.diag(kernel_weights)), mean_sub) / sum_weights 
     #assert (abs(cov_x.transpose() - cov_x)/abs(cov_x.transpose() + cov_x) < 1e-6).all(), 'Covariance matrix not symmetric, \n cov_x = {0}, mean_sub = {1}'.format(cov_x, mean_sub)
     save_xd[i] = mu_x #save first point of the branch
     count_points += 1
     
     #calculate path length
     if i==0:
       lamb[0] = 0
     else:
       lamb[i] = lamb[i-1] + sqrt(sum((mu_x - save_xd[i-1])**2))
     
     #calculate eigenvalues/vectors
     #(sorted_eigen_cov is a list of tuples containing eigenvalue and associated eigenvector, sorted descending by eigenvalue)
     eigen_cov = eigh(cov_x)
     sorted_eigen_cov = zip(eigen_cov[0],map(ravel,vsplit(eigen_cov[1].transpose(),len(eigen_cov[1]))))
     sorted_eigen_cov.sort(key = lambda elt: elt[0], reverse = True)   
     eigen_norm = sqrt(sum(sorted_eigen_cov[0][1]**2))
     eigen_vecd[i] = direction * sorted_eigen_cov[0][1] / eigen_norm  #Unit eigenvector corresponding to largest eigenvalue
     
     #rho parameters
     rho[i] = sorted_eigen_cov[1][0] / sorted_eigen_cov[0][0] #Ratio of two largest eigenvalues
     if i != 0 and rho[i] > rho0 and rho[i-1] <= rho0:
       high_rho_points = vstack((high_rho_points, x0))
     
     #angle between successive eigenvectors
     if i==0 and last_eigenvector is not None:
       cos_alt_neu[i] = direction * dot(last_eigenvector, eigen_vecd[i])
     if i > 0:
       cos_alt_neu[i] = dot(eigen_vecd[i], eigen_vecd[i-1])
     
     #signum flipping
     if cos_alt_neu[i] < 0:
       eigen_vecd[i] = -eigen_vecd[i]
       cos_neu_neu[i] = -cos_alt_neu[i]
     else:
       cos_neu_neu[i] = cos_alt_neu[i]
    
     #angle penalization
     pen = self._lpcParameters['pen']
     if pen > 0:
       if i == 0 and last_eigenvector is not None:
         a = abs(cos_alt_neu[i])**pen
         eigen_vecd[i] = a * eigen_vecd[i] + (1-a) * last_eigenvector
       if i > 0:
         a = abs(cos_alt_neu[i])**pen
         eigen_vecd[i] = a * eigen_vecd[i] + (1-a) * eigen_vecd[i-1]
             
     #check curve termination criteria
     if i not in (0, it-1):
       #crossing
       cross = self._lpcParameters['cross']
       if forward_curve is None:
         full_curve_points = save_xd[0:i+1]
       else:
         full_curve_points = vstack((forward_curve['save_xd'],save_xd[0:i+1])) #inefficient, initialize then append? 
       if not cross:
         prox = where(ravel(cdist(full_curve_points,[mu_x])) <= mean(h))[0]
         if len(prox) != max(prox) - min(prox) + 1:
           break
         
       #convergence
       convergence_at = self._lpcParameters['convergence_at']
       conv_ratio = abs(lamb[i] - lamb[i-1]) / (2 * (lamb[i] + lamb[i-1]))
       if conv_ratio  < convergence_at:
         break
       
       #boundary
       boundary = self._lpcParameters['boundary']
       if conv_ratio < boundary:
         c0[i+1] = 0.995 * c0[i]
       else:
         c0[i+1] = min(1.01*c0[i], 1)
     
     #step along in direction eigen_vecd[i]
     x0 = mu_x + t0 * eigen_vecd[i]
   
   #trim output in the case where convergence occurs before 'it' iterations    
   curve = { 'save_xd': save_xd[0:count_points],
             'eigen_vecd': eigen_vecd[0:count_points],
             'cos_neu_neu': cos_neu_neu[0:count_points],
             'rho': rho[0:count_points],
             'high_rho_points': high_rho_points,
             'lamb': lamb[0:count_points],
             'c0': c0[0:count_points]
           }
   return curve  
コード例 #5
0
 def test_2D_array(self):
     a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])
     res = vsplit(a, 2)
     desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])]
     compare_results(res, desired)