def test_pearsonr(self): # Tests some computations of Pearson's r x = ma.arange(10) with warnings.catch_warnings(): # The tests in this context are edge cases, with perfect # correlation or anticorrelation, or totally masked data. # None of these should trigger a RuntimeWarning. warnings.simplefilter("error", RuntimeWarning) assert_almost_equal(mstats.pearsonr(x, x)[0], 1.0) assert_almost_equal(mstats.pearsonr(x, x[::-1])[0], -1.0) x = ma.array(x, mask=True) pr = mstats.pearsonr(x, x) assert_(pr[0] is masked) assert_(pr[1] is masked) x1 = ma.array([-1.0, 0.0, 1.0]) y1 = ma.array([0, 0, 3]) r, p = mstats.pearsonr(x1, y1) assert_almost_equal(r, np.sqrt(3)/2) assert_almost_equal(p, 1.0/3) # (x2, y2) have the same unmasked data as (x1, y1). mask = [False, False, False, True] x2 = ma.array([-1.0, 0.0, 1.0, 99.0], mask=mask) y2 = ma.array([0, 0, 3, -1], mask=mask) r, p = mstats.pearsonr(x2, y2) assert_almost_equal(r, np.sqrt(3)/2) assert_almost_equal(p, 1.0/3)
def test_setxor1d(self): # Test setxor1d a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) test = setxor1d(a, b) assert_equal(test, array([3, 4, 7])) # a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) b = [1, 2, 3, 4, 5] test = setxor1d(a, b) assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1])) # a = array([1, 2, 3]) b = array([6, 5, 4]) test = setxor1d(a, b) assert_(isinstance(test, MaskedArray)) assert_equal(test, [1, 2, 3, 4, 5, 6]) # a = array([1, 8, 2, 3], mask=[0, 1, 0, 0]) b = array([6, 5, 4, 8], mask=[0, 0, 0, 1]) test = setxor1d(a, b) assert_(isinstance(test, MaskedArray)) assert_equal(test, [1, 2, 3, 4, 5, 6]) # assert_array_equal([], setxor1d([], []))
def test_pickling_subbaseclass(self): # Test pickling w/ a subclass of ndarray a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2) a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) assert_(isinstance(a_pickled._data, np.matrix))
def test_masked_binary_operations2(self): # Tests domained_masked_binary_operation (x, mx) = self.data xmx = masked_array(mx.data.__array__(), mask=mx.mask) assert_(isinstance(divide(mx, mx), MMatrix)) assert_(isinstance(divide(mx, x), MMatrix)) assert_equal(divide(mx, mx), divide(xmx, xmx))
def test_view_simple_dtype(self): (mrec, a, b, arr) = self.data ntype = (float, 2) test = mrec.view(ntype) assert_(isinstance(test, ma.MaskedArray)) assert_equal(test, np.array(list(zip(a, b)), dtype=float)) assert_(test[3, 1] is ma.masked)
def test_drop_fields(self): # Test drop_fields a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) # A basic field test = drop_fields(a, 'a') control = np.array([((2, 3.0),), ((5, 6.0),)], dtype=[('b', [('ba', float), ('bb', int)])]) assert_equal(test, control) # Another basic field (but nesting two fields) test = drop_fields(a, 'b') control = np.array([(1,), (4,)], dtype=[('a', int)]) assert_equal(test, control) # A nested sub-field test = drop_fields(a, ['ba', ]) control = np.array([(1, (3.0,)), (4, (6.0,))], dtype=[('a', int), ('b', [('bb', int)])]) assert_equal(test, control) # All the nested sub-field from a field: zap that field test = drop_fields(a, ['ba', 'bb']) control = np.array([(1,), (4,)], dtype=[('a', int)]) assert_equal(test, control) test = drop_fields(a, ['a', 'b']) assert_(test is None)
def test_out(self): x = masked_array(np.arange(30).reshape(10, 3)) x[:3] = x[-3:] = masked out = masked_array(np.ones(10)) r = median(x, axis=1, out=out) assert_equal(r, out) assert_(type(r) == MaskedArray)
def test_1D_float96(self): a = ma.array((1,2,3,4), mask=(0,0,0,1)) actual_dt = mstats.hmean(a, dtype=np.float96) desired_dt = np.asarray(3. / (1./1 + 1./2 + 1./3), dtype=np.float96) assert_almost_equal(actual_dt, desired_dt, decimal=14) assert_(actual_dt.dtype == desired_dt.dtype)
def test_compressed(self): a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0]) b = a.compressed() assert_equal(b, a) assert_(isinstance(b, np.matrix)) a[0, 0] = masked b = a.compressed() assert_equal(b, [[2, 3, 4]])
def test_pickling_subbaseclass(self): # Test pickling w/ a subclass of ndarray a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) assert_(isinstance(a_pickled._data, np.matrix))
def test_view(self): # Test view w/ flexible dtype iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = masked_array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) test = a.view((float, 2), np.matrix) assert_equal(test, data) assert_(isinstance(test, np.matrix)) assert_(not isinstance(test, MaskedArray))
def test_pearsonr(self): "Tests some computations of Pearson's r" x = ma.arange(10) assert_almost_equal(mstats.pearsonr(x,x)[0], 1.0) assert_almost_equal(mstats.pearsonr(x,x[::-1])[0], -1.0) # x = ma.array(x, mask=True) pr = mstats.pearsonr(x,x) assert_(pr[0] is masked) assert_(pr[1] is masked)
def test_byview(self): # Test creation by view base = self.base mbase = base.view(mrecarray) assert_equal(mbase.recordmask, base.recordmask) assert_equal_records(mbase._mask, base._mask) assert_(isinstance(mbase._data, recarray)) assert_equal_records(mbase._data, base._data.view(recarray)) for field in ('a', 'b', 'c'): assert_equal(base[field], mbase[field]) assert_equal_records(mbase.view(mrecarray), mbase)
def test_wmasked_arrays(self): # Test merge_arrays masked arrays (_, x, _, _) = self.data mx = ma.array([1, 2, 3], mask=[1, 0, 0]) test = merge_arrays((x, mx), usemask=True) control = ma.array([(1, 1), (2, 2), (-1, 3)], mask=[(0, 1), (0, 0), (1, 0)], dtype=[('f0', int), ('f1', int)]) assert_equal(test, control) test = merge_arrays((x, mx), usemask=True, asrecarray=True) assert_equal(test, control) assert_(isinstance(test, MaskedRecords))
def test_pearsonr(self): "Tests some computations of Pearson's r" x = ma.arange(10) olderr = np.seterr(all='ignore') try: assert_almost_equal(mstats.pearsonr(x,x)[0], 1.0) assert_almost_equal(mstats.pearsonr(x,x[::-1])[0], -1.0) x = ma.array(x, mask=True) pr = mstats.pearsonr(x,x) finally: np.seterr(**olderr) assert_(pr[0] is masked) assert_(pr[1] is masked)
def assert_mask_equivalent(m1, m2, err_msg=''): ''' Asserts the equality of two masks. This is an amended version of ``np.ma.testutils.assert_mask_equal`` to allow for one test array to have no mask and the other to have a mask array where each element is ``False``. We want to handle this situation as the two arrays are functionally equivalent. ''' if m1 is np.ma.nomask or not np.any(m1): assert_(m2 is np.ma.nomask or not np.any(m2), msg=err_msg) if m2 is np.ma.nomask or not np.any(m2): assert_(m1 is np.ma.nomask or not np.any(m1), msg=err_msg) assert_array_equal(m1, m2, err_msg=err_msg)
def test_allany_onmatrices(self): x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) X = np.matrix(x) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mX = masked_array(X, mask=m) mXbig = (mX > 0.5) mXsmall = (mX < 0.5) assert_(not mXbig.all()) assert_(mXbig.any()) assert_equal(mXbig.all(0), np.matrix([False, False, True])) assert_equal(mXbig.all(1), np.matrix([False, False, True]).T) assert_equal(mXbig.any(0), np.matrix([False, False, True])) assert_equal(mXbig.any(1), np.matrix([True, True, True]).T) assert_(not mXsmall.all()) assert_(mXsmall.any()) assert_equal(mXsmall.all(0), np.matrix([True, True, False])) assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T) assert_equal(mXsmall.any(0), np.matrix([True, True, False])) assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
def test_dot_returns_maskedarray(self): # See gh-6611 a = np.eye(3) b = array(a) assert_(type(dot(a, a)) is MaskedArray) assert_(type(dot(a, b)) is MaskedArray) assert_(type(dot(b, a)) is MaskedArray) assert_(type(dot(b, b)) is MaskedArray)
def test_1D(self): a = (1,2,3,4) actual = mstats.gmean(a) desired = np.power(1*2*3*4,1./4.) assert_almost_equal(actual, desired, decimal=14) desired1 = mstats.gmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14) assert_(not isinstance(desired1, ma.MaskedArray)) a = ma.array((1,2,3,4),mask=(0,0,0,1)) actual = mstats.gmean(a) desired = np.power(1*2*3,1./3.) assert_almost_equal(actual, desired,decimal=14) desired1 = mstats.gmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14)
def test_fromtextfile(self): # Tests reading from a text file. fcontent = ( """# 'One (S)','Two (I)','Three (F)','Four (M)','Five (-)','Six (C)' 'strings',1,1.0,'mixed column',,1 'with embedded "double quotes"',2,2.0,1.0,,1 'strings',3,3.0E5,3,,1 'strings',4,-1e-10,,,1 """) with temppath() as path: with open(path, 'w') as f: f.write(fcontent) mrectxt = fromtextfile(path, delimitor=',', varnames='ABCDEFG') assert_(isinstance(mrectxt, MaskedRecords)) assert_equal(mrectxt.F, [1, 1, 1, 1]) assert_equal(mrectxt.E._mask, [1, 1, 1, 1]) assert_equal(mrectxt.C, [1, 2, 3.e+5, -1e-10])
def test_chisquare_masked_arrays(): # The other tests were taken from the tests for stats.chisquare, so # they don't test the function with masked arrays. Here masked arrays # are tested. obs = np.array([[8, 8, 16, 32, -1], [-1, -1, 3, 4, 5]]).T mask = np.array([[0, 0, 0, 0, 1], [1, 1, 0, 0, 0]]).T mobs = ma.masked_array(obs, mask) expected_chisq = np.array([24.0, 0.5]) chisq, p = mstats.chisquare(mobs) assert_array_equal(chisq, expected_chisq) assert_array_almost_equal(p, stats.chisqprob(expected_chisq, mobs.count(axis=0) - 1)) chisq, p = mstats.chisquare(mobs.T, axis=1) assert_array_equal(chisq, expected_chisq) assert_array_almost_equal(p, stats.chisqprob(expected_chisq, mobs.T.count(axis=1) - 1)) # When axis=None, the two values should have type np.float64. chisq, p = mstats.chisquare([1,2,3], axis=None) assert_(isinstance(chisq, np.float64)) assert_(isinstance(p, np.float64)) assert_equal(chisq, 1.0) assert_almost_equal(p, stats.chisqprob(1.0, 2))
def test_view_flexible_type(self): (mrec, a, b, arr) = self.data alttype = [('A', float), ('B', float)] test = mrec.view(alttype) assert_(isinstance(test, MaskedRecords)) assert_equal_records(test, arr.view(alttype)) assert_(test['B'][3] is masked) assert_equal(test.dtype, np.dtype(alttype)) assert_(test._fill_value is None)
def test_view_flexible_type(self): (mrec, a, b, arr) = self.data alttype = [('A', np.float), ('B', np.float)] test = mrec.view(alttype) assert_(isinstance(test, MaskedRecords)) assert_equal_records(test, arr.view(alttype)) assert_(test['B'][3] is masked) assert_equal(test.dtype, np.dtype(alttype)) assert_(test._fill_value is None)
def test_flat(self): # Test that flat can return items even for matrices [#4585, #4615] # test simple access test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) assert_equal(test.flat[1], 2) assert_equal(test.flat[2], masked) assert_(np.all(test.flat[0:2] == test[0, 0:2])) # Test flat on masked_matrices test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) test.flat = masked_array([3, 2, 1], mask=[1, 0, 0]) control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0]) assert_equal(test, control) # Test setting test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) testflat = test.flat testflat[:] = testflat[[2, 1, 0]] assert_equal(test, control) testflat[0] = 9 # test that matrices keep the correct shape (#4615) a = masked_array(np.matrix(np.eye(2)), mask=0) b = a.flat b01 = b[:2] assert_equal(b01.data, np.array([[1., 0.]])) assert_equal(b01.mask, np.array([[False, False]]))
def test_masked_1d(self): x = array(np.arange(5), mask=True) assert_equal(np.ma.median(x), np.ma.masked) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is np.ma.core.MaskedConstant) x = array(np.arange(5), mask=False) assert_equal(np.ma.median(x), 2.) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) x = array(np.arange(5), mask=[0,1,0,0,0]) assert_equal(np.ma.median(x), 2.5) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) x = array(np.arange(5), mask=[0,1,1,1,1]) assert_equal(np.ma.median(x), 0.) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray)
def test_non_masked(self): x = np.arange(9) assert_equal(np.ma.median(x), 4.) assert_(type(np.ma.median(x)) is not MaskedArray) x = range(9) assert_equal(np.ma.median(x), 4.) assert_(type(np.ma.median(x)) is not MaskedArray) x = 5 assert_equal(np.ma.median(x), 5.) assert_(type(np.ma.median(x)) is not MaskedArray)
def test_2d_waxis(self): # Tests median w/ 2D arrays and different axis. x = masked_array(np.arange(30).reshape(10, 3)) x[:3] = x[-3:] = masked assert_equal(median(x), 14.5) assert_(type(np.ma.median(x)) is not MaskedArray) assert_equal(median(x, axis=0), [13.5, 14.5, 15.5]) assert_(type(np.ma.median(x, axis=0)) is MaskedArray) assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0]) assert_(type(np.ma.median(x, axis=1)) is MaskedArray) assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
def test_get(self): # Tests fields retrieval base = self.base.copy() mbase = base.view(mrecarray) # As fields.......... for field in ("a", "b", "c"): assert_equal(getattr(mbase, field), mbase[field]) assert_equal(base[field], mbase[field]) # as elements ....... mbase_first = mbase[0] assert_(isinstance(mbase_first, mrecarray)) assert_equal(mbase_first.dtype, mbase.dtype) assert_equal(mbase_first.tolist(), (1, 1.1, b"one")) # Used to be mask, now it's recordmask assert_equal(mbase_first.recordmask, nomask) assert_equal(mbase_first._mask.item(), (False, False, False)) assert_equal(mbase_first["a"], mbase["a"][0]) mbase_last = mbase[-1] assert_(isinstance(mbase_last, mrecarray)) assert_equal(mbase_last.dtype, mbase.dtype) assert_equal(mbase_last.tolist(), (None, None, None)) # Used to be mask, now it's recordmask assert_equal(mbase_last.recordmask, True) assert_equal(mbase_last._mask.item(), (True, True, True)) assert_equal(mbase_last["a"], mbase["a"][-1]) assert_((mbase_last["a"] is masked)) # as slice .......... mbase_sl = mbase[:2] assert_(isinstance(mbase_sl, mrecarray)) assert_equal(mbase_sl.dtype, mbase.dtype) # Used to be mask, now it's recordmask assert_equal(mbase_sl.recordmask, [0, 1]) assert_equal_records( mbase_sl.mask, np.array( [(False, False, False), (True, True, True)], dtype=mbase._mask.dtype ), ) assert_equal_records(mbase_sl, base[:2].view(mrecarray)) for field in ("a", "b", "c"): assert_equal(getattr(mbase_sl, field), base[:2][field])
def test_docstring_examples(self): "test the examples given in the docstring of ma.median" x = array(np.arange(8), mask=[0]*4 + [1]*4) assert_equal(np.ma.median(x), 1.5) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) x = array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4) assert_equal(np.ma.median(x), 2.5) assert_equal(np.ma.median(x).shape, (), "shape mismatch") assert_(type(np.ma.median(x)) is not MaskedArray) ma_x = np.ma.median(x, axis=-1, overwrite_input=True) assert_equal(ma_x, [2., 5.]) assert_equal(ma_x.shape, (2,), "shape mismatch") assert_(type(ma_x) is MaskedArray)
def test_get(self): # Tests fields retrieval base = self.base.copy() mbase = base.view(mrecarray) # As fields.......... for field in ('a', 'b', 'c'): assert_equal(getattr(mbase, field), mbase[field]) assert_equal(base[field], mbase[field]) # as elements ....... mbase_first = mbase[0] assert_(isinstance(mbase_first, mrecarray)) assert_equal(mbase_first.dtype, mbase.dtype) assert_equal(mbase_first.tolist(), (1, 1.1, asbytes('one'))) # Used to be mask, now it's recordmask assert_equal(mbase_first.recordmask, nomask) assert_equal(mbase_first._mask.item(), (False, False, False)) assert_equal(mbase_first['a'], mbase['a'][0]) mbase_last = mbase[-1] assert_(isinstance(mbase_last, mrecarray)) assert_equal(mbase_last.dtype, mbase.dtype) assert_equal(mbase_last.tolist(), (None, None, None)) # Used to be mask, now it's recordmask assert_equal(mbase_last.recordmask, True) assert_equal(mbase_last._mask.item(), (True, True, True)) assert_equal(mbase_last['a'], mbase['a'][-1]) assert_((mbase_last['a'] is masked)) # as slice .......... mbase_sl = mbase[:2] assert_(isinstance(mbase_sl, mrecarray)) assert_equal(mbase_sl.dtype, mbase.dtype) # Used to be mask, now it's recordmask assert_equal(mbase_sl.recordmask, [0, 1]) assert_equal_records(mbase_sl.mask, np.array([(False, False, False), (True, True, True)], dtype=mbase._mask.dtype)) assert_equal_records(mbase_sl, base[:2].view(mrecarray)) for field in ('a', 'b', 'c'): assert_equal(getattr(mbase_sl, field), base[:2][field])
def test_hardmask(self): # Test hardmask base = self.base.copy() mbase = base.view(mrecarray) mbase.harden_mask() assert_(mbase._hardmask) mbase.mask = nomask assert_equal_records(mbase._mask, base._mask) mbase.soften_mask() assert_(not mbase._hardmask) mbase.mask = nomask # So, the mask of a field is no longer set to nomask... assert_equal_records(mbase._mask, ma.make_mask_none(base.shape, base.dtype)) assert_(ma.make_mask(mbase["b"]._mask) is nomask) assert_equal(mbase["a"]._mask, mbase["b"]._mask)
def test_hardmask(self): # Test hardmask base = self.base.copy() mbase = base.view(mrecarray) mbase.harden_mask() assert_(mbase._hardmask) mbase.mask = nomask assert_equal_records(mbase._mask, base._mask) mbase.soften_mask() assert_(not mbase._hardmask) mbase.mask = nomask # So, the mask of a field is no longer set to nomask... assert_equal_records(mbase._mask, ma.make_mask_none(base.shape, base.dtype)) assert_(ma.make_mask(mbase['b']._mask) is nomask) assert_equal(mbase['a']._mask, mbase['b']._mask)
def test_allany_onmatrices(self): x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) X = npm.matrix(x) m = np.array( [[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mX = masked_array(X, mask=m) mXbig = (mX > 0.5) mXsmall = (mX < 0.5) assert_(not mXbig.all()) assert_(mXbig.any()) assert_equal(mXbig.all(0), npm.matrix([False, False, True])) assert_equal(mXbig.all(1), npm.matrix([False, False, True]).T) assert_equal(mXbig.any(0), npm.matrix([False, False, True])) assert_equal(mXbig.any(1), npm.matrix([True, True, True]).T) assert_(not mXsmall.all()) assert_(mXsmall.any()) assert_equal(mXsmall.all(0), npm.matrix([True, True, False])) assert_equal(mXsmall.all(1), npm.matrix([False, False, False]).T) assert_equal(mXsmall.any(0), npm.matrix([True, True, False])) assert_equal(mXsmall.any(1), npm.matrix([True, True, False]).T)
def test_empty(self): res1 = mstats.ttest_1samp([], 1) assert_(np.all(np.isnan(res1)))
def test_1D_float96(self): a = ma.array((1, 2, 3, 4), mask=(0, 0, 0, 1)) actual_dt = mstats.gmean(a, dtype=np.float96) desired_dt = np.power(1 * 2 * 3, 1. / 3.).astype(np.float96) assert_almost_equal(actual_dt, desired_dt, decimal=14) assert_(actual_dt.dtype == desired_dt.dtype)
def test_empty(self): res1 = mstats.ttest_ind([], []) assert_(np.all(np.isnan(res1)))
def test_matrix_indexing(self): # Tests conversions and indexing x1 = np.matrix([[1, 2, 3], [4, 3, 2]]) x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]]) x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]]) x4 = masked_array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? # tests of indexing assert_(type(x2[1, 0]) is type(x1[1, 0])) assert_(x1[1, 0] == x2[1, 0]) assert_(x2[1, 1] is masked) assert_equal(x1[0, 2], x2[0, 2]) assert_equal(x1[0, 1:], x2[0, 1:]) assert_equal(x1[:, 2], x2[:, 2]) assert_equal(x1[:], x2[:]) assert_equal(x1[1:], x3[1:]) x1[0, 2] = 9 x2[0, 2] = 9 assert_equal(x1, x2) x1[0, 1:] = 99 x2[0, 1:] = 99 assert_equal(x1, x2) x2[0, 1] = masked assert_equal(x1, x2) x2[0, 1:] = masked assert_equal(x1, x2) x2[0, :] = x1[0, :] x2[0, 1] = masked assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]]))) x3[1, :] = masked_array([1, 2, 3], [1, 1, 0]) assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0]))) assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0]))) x4[1, :] = masked_array([1, 2, 3], [1, 1, 0]) assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0]))) assert_(allequal(x4[1], masked_array([1, 2, 3]))) x1 = np.matrix(np.arange(5) * 1.0) x2 = masked_values(x1, 3.0) assert_equal(x1, x2) assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType), x2.mask)) assert_equal(3.0, x2.fill_value)
def test_masked_binary_operations(self): # Tests masked_binary_operation (x, mx) = self.data # Result should be a MMatrix assert_(isinstance(add(mx, mx), MMatrix)) assert_(isinstance(add(mx, x), MMatrix)) # Result should work assert_equal(add(mx, x), mx+x) assert_(isinstance(add(mx, mx)._data, np.matrix)) assert_(isinstance(add.outer(mx, mx), MMatrix)) assert_(isinstance(hypot(mx, mx), MMatrix)) assert_(isinstance(hypot(mx, x), MMatrix))
def test_masked_unary_operations(self): # Tests masked_unary_operation (x, mx) = self.data with np.errstate(divide='ignore'): assert_(isinstance(log(mx), MMatrix)) assert_equal(log(x), np.log(x))
def test_maskedarray_subclassing(self): # Tests subclassing MaskedArray (x, mx) = self.data assert_(isinstance(mx._data, np.matrix))
def test_dot_out(self): a = array(np.eye(3)) out = array(np.zeros((3, 3))) res = dot(a, a, out=out) assert_(res is out) assert_equal(a, res)
def test_view_by_itself(self): (mrec, a, b, arr) = self.data test = mrec.view() assert_(isinstance(test, MaskedRecords)) assert_equal_records(test, mrec) assert_equal_records(test._mask, mrec._mask)