コード例 #1
0
def kernel_matrix(X, kernel, n1, n2):
    (n, d) = X.shape
    assert n == n1 + n2

    K = mat.zeros((n, n))
    for i in xrange(n):
        for j in xrange(i + 1):
            K[i, j] = kernel(X[i, :], X[j, :])
            K[j, i] = K[i, j]

    U1 = mat.sum(K[0:n1, :], 0) / n1
    U2 = mat.sum(K[n1:n, :], 0) / n2
    U1m = mat.tile(U1, (n1, 1))
    U2m = mat.tile(U2, (n2, 1))
    U = mat.bmat('U1m; U2m')
    m1m1 = mat.sum(K[0:n1, 0:n1]) / (n1 * n1)
    m1m2 = mat.sum(K[0:n1, n1:n]) / (n1 * n2)
    m2m2 = mat.sum(K[n1:n, n1:n]) / (n2 * n2)
    mumu = mat.zeros((n, n))
    mumu[0:n1, 0:n1] = m1m1
    mumu[0:n1, n1:n] = m1m2
    mumu[n1:n, 0:n1] = m1m2
    mumu[n1:n, n1:n] = m2m2
    Kcu = K - U
    Kuc = Kcu.T
    N = mat.ones((n, n)) / n
    Kc = K - U - U.T + mumu
    return (K, Kuc, Kc)
コード例 #2
0
ファイル: bhatta.py プロジェクト: caomw/Bhattacharrya
def kernel_matrix(X, kernel, n1, n2):
    (n, d) = X.shape
    assert n == n1 + n2

    K = mat.zeros((n,n))
    for i in xrange(n):
        for j in xrange(i+1):
            K[i,j] = kernel(X[i,:], X[j,:])
            K[j,i] = K[i,j]

    U1 = mat.sum(K[0:n1,:],0) / n1
    U2 = mat.sum(K[n1:n,:],0) / n2
    U1m = mat.tile(U1, (n1,1))
    U2m = mat.tile(U2, (n2,1))
    U = mat.bmat('U1m; U2m')
    m1m1 = mat.sum(K[0:n1, 0:n1]) / (n1*n1)
    m1m2 = mat.sum(K[0:n1, n1:n]) / (n1*n2)
    m2m2 = mat.sum(K[n1:n, n1:n]) / (n2*n2) 
    mumu = mat.zeros((n,n))
    mumu[0:n1, 0:n1] = m1m1
    mumu[0:n1, n1:n] = m1m2
    mumu[n1:n, 0:n1] = m1m2
    mumu[n1:n, n1:n] = m2m2
    Kcu = K - U
    Kuc = Kcu.T
    N = mat.ones((n,n))/n
    Kc = K - U - U.T + mumu
    return (K, Kuc, Kc)
コード例 #3
0
ファイル: bhatta.py プロジェクト: caomw/Bhattacharrya
    def kernel_supermatrix(self, i, j):
        kernel = self.kernel
        D1 = self.datasets[i]
        D2 = self.datasets[j]
        X1 = D1.X
        X2 = D2.X
        (n1, d) = X1.shape
        (n2, d) = X2.shape
        n = n1 + n2
        X = mat.bmat('X1; X2')
        K1 = D1.K
        K2 = D2.K
        K = mat.zeros((n,n))
        K[0:n1, 0:n1] = K1
        K[n1:n, n1:n] = K2
        for i in xrange(n1):
            for j in xrange(n1, n):
                K[i,j] = kernel(X[i,:], X[j,:])
                K[j,i] = K[i,j]

        # Inelegant - improve later
        U1 = mat.sum(K[0:n1,:],0) / n1
        U2 = mat.sum(K[n1:n,:],0) / n2
        U1m = mat.tile(U1, (n1,1))
        U2m = mat.tile(U2, (n2,1))
        U = mat.bmat('U1m; U2m')
        m1m1 = mat.sum(K[0:n1, 0:n1]) / (n1*n1)
        m1m2 = mat.sum(K[0:n1, n1:n]) / (n1*n2)
        m2m2 = mat.sum(K[n1:n, n1:n]) / (n2*n2) 
        mumu = mat.zeros((n,n))
        mumu[0:n1, 0:n1] = m1m1
        mumu[0:n1, n1:n] = m1m2
        mumu[n1:n, 0:n1] = m1m2
        mumu[n1:n, n1:n] = m2m2
        Kcu = K - U
        Kuc = Kcu.T
        N = mat.ones((n,n))/n
        Kc = K - U - U.T + mumu
        return (K, Kuc, Kc)
コード例 #4
0
    def kernel_supermatrix(self, i, j):
        kernel = self.kernel
        D1 = self.datasets[i]
        D2 = self.datasets[j]
        X1 = D1.X
        X2 = D2.X
        (n1, d) = X1.shape
        (n2, d) = X2.shape
        n = n1 + n2
        X = mat.bmat('X1; X2')
        K1 = D1.K
        K2 = D2.K
        K = mat.zeros((n, n))
        K[0:n1, 0:n1] = K1
        K[n1:n, n1:n] = K2
        for i in xrange(n1):
            for j in xrange(n1, n):
                K[i, j] = kernel(X[i, :], X[j, :])
                K[j, i] = K[i, j]

        # Inelegant - improve later
        U1 = mat.sum(K[0:n1, :], 0) / n1
        U2 = mat.sum(K[n1:n, :], 0) / n2
        U1m = mat.tile(U1, (n1, 1))
        U2m = mat.tile(U2, (n2, 1))
        U = mat.bmat('U1m; U2m')
        m1m1 = mat.sum(K[0:n1, 0:n1]) / (n1 * n1)
        m1m2 = mat.sum(K[0:n1, n1:n]) / (n1 * n2)
        m2m2 = mat.sum(K[n1:n, n1:n]) / (n2 * n2)
        mumu = mat.zeros((n, n))
        mumu[0:n1, 0:n1] = m1m1
        mumu[0:n1, n1:n] = m1m2
        mumu[n1:n, 0:n1] = m1m2
        mumu[n1:n, n1:n] = m2m2
        Kcu = K - U
        Kuc = Kcu.T
        N = mat.ones((n, n)) / n
        Kc = K - U - U.T + mumu
        return (K, Kuc, Kc)
コード例 #5
0
ファイル: bhatta.py プロジェクト: caomw/Bhattacharrya
def prepare_bhatta(X1, X2, kernel, eta, verbose=False):
    (n1, d1) = X1.shape
    (n2, d ) = X2.shape
    assert d1 == d
    n = n1 + n2
    X = mat.bmat('X1;X2')
    (K, Kuc, Kc) = kernel_matrix(X, kernel, n1, n2)
    G = GS_basis(Kc, verbose)
    (null, g_dim) = G.shape

    mu1 = mat.sum(Kuc[0:n1,:] * G,0) / n1
    mu2 = mat.sum(Kuc[n1:n,:] * G,0) / n2

    return (Kc, G, mu1, mu2)
コード例 #6
0
def prepare_bhatta(X1, X2, kernel, eta, verbose=False):
    (n1, d1) = X1.shape
    (n2, d) = X2.shape
    assert d1 == d
    n = n1 + n2
    X = mat.bmat('X1;X2')
    (K, Kuc, Kc) = kernel_matrix(X, kernel, n1, n2)
    G = GS_basis(Kc, verbose)
    (null, g_dim) = G.shape

    mu1 = mat.sum(Kuc[0:n1, :] * G, 0) / n1
    mu2 = mat.sum(Kuc[n1:n, :] * G, 0) / n2

    return (Kc, G, mu1, mu2)
コード例 #7
0
ファイル: bhatta.py プロジェクト: caomw/Bhattacharrya
def eig_bhatta(X1, X2, kernel, eta, r):
    # Tested. Verified:
    # Poly-kernel RKHS representations of all objects are roughly equal to eigenbasis representations (slight differences for S3)
    # Correctness for X1 ~= X2
    # Close results to empirical bhatta in test_suite_1
    # Remaining issues: Eigendecomposition of centered kernel matrices
    # occasionally produces negative-value eigenvalues
    (n1, d1) = X1.shape
    (n2, d2) = X2.shape
    assert d1==d2
    n = n1+n2
    X = mat.bmat("X1;X2")
    (K, Kuc, Kc) = kernel_matrix(X, kernel, n1, n2)
    Kc1 = Kc[0:n1, 0:n1]
    Kc2 = Kc[n1:n, n1:n]

    (Lam1, Alpha1) = eigsh(Kc1, r)
    (Lam2, Alpha2) = eigsh(Kc2, r)
    Alpha1 = matrix(Alpha1)
    Alpha2 = matrix(Alpha2)
    Lam1 = Lam1 / n1
    Lam2 = Lam2 / n2
    Beta1 = mat.zeros((n,r))
    Beta2 = mat.zeros((n,r))

    for i in xrange(r):
        Beta1[0:n1, i] = Alpha1[:,i] / (n1 * Lam1[i])**.5
        Beta2[n1:n, i] = Alpha2[:,i] / (n2 * Lam2[i])**.5


    #Eta = mat.eye((gamma, gamma)) * eta
    Beta = mat.bmat('Beta1, Beta2')
    assert not(any(math.isnan(Beta)))
    Omega = eig_ortho(Kc, Beta)
    mu1_w = mat.sum(Kuc[0:n1, :] * Omega, 0) / n1
    mu2_w = mat.sum(Kuc[n1:n, :] * Omega, 0) / n2

    Eta_w = eta * mat.eye(2*r)    

    S1_w = Omega.T * Kc[:,0:n1] * Kc[0:n1,:] * Omega / n1
    S2_w = Omega.T * Kc[:,n1:n] * Kc[n1:n,:] * Omega / n2
    S1_w += Eta_w
    S2_w += Eta_w

    mu3_w = .5 * (S1_w.I * mu1_w.T + S2_w.I * mu2_w.T).T
    S3_w = 2 * (S1_w.I + S2_w.I).I

    d1 = la.det(S1_w) ** -.25
    d2 = la.det(S2_w) ** -.25

    e1 = exp(-mu1_w * S1_w.I * mu1_w.T / 4)
    e2 = exp(-mu2_w * S2_w.I * mu2_w.T / 4)
    d3 = la.det(S3_w) ** .5
    e3 = exp(mu3_w * S3_w * mu3_w.T / 2)

    dterm = d1*d2*d3
    eterm = e1*e2*e3
    rval = float(dterm*eterm)

    if math.isnan(rval):
        rval = -1

    return rval
コード例 #8
0
ファイル: FRAHST_M.py プロジェクト: aanchan/Old-PhD-Code
def FRAHST_M(streams, energyThresh, alpha):
    """ Fast rank adaptive row-Householder Subspace Traking Algorithm   
    
    """
    #Initialise 
    N = streams.shape[1]
    rr = [1]    
    hiddenV = npm.zeros((streams.shape[0], N))   
    # generate random orthonormal  - N x r 
    qq,RR = qr(rand(N,1))    
    Q_t = [mat(qq)]    
    S_t = [mat([0.000001])] 
    E_t = [0]
    E_dash_t = [0]
    z_dash = npm.zeros(N)
    RSRE = mat([0])
    No_inp_count = 0
    
    iter_streams = iter(streams)
    
    for t in range(1, streams.shape[0] + 1):
        
        z_vec = mat(iter_streams.next())
        
        z_vec = z_vec.T # Now a column Vector
        
        hh = Q_t[t-1].T * z_vec                       # 13a

        Z = z_vec.T * z_vec - hh.T * hh           # 13b
        
        Z = float(Z) # cheak that Z is really scalar
        
        if Z > 0.0000001:        
            
            X = alpha * S_t[t-1] + hh * hh.T               # 13c
        
            # X.T * b = sqrt(Z) * hh                           # 13d        
        
            b = multiply(inv(X.T), sqrt(Z)) * hh  # inverse method 
        
            phi_sq_t = 0.5 + (1 / sqrt(4 *((b.T * b) + 1)))   # 13e

            phi_t = sqrt(phi_sq_t)        

            delta = phi_t / sqrt(Z)                        # 13f
        
            gamma = (1 - 2 * phi_sq_t) / (2 * phi_t)         #13 g
        
            v = multiply(gamma, b)  
        
            S_t.append(X - multiply(1/delta , v * hh.T))         # 13 h  S_t[t] = 

            
            e = multiply(delta, z_vec) - (Q_t[t-1] * (multiply(delta, hh) - v))  # 13 i
            
            Q_t.append(Q_t[t-1] - 2 * (e * v.T))                 # 13 j  Q[t] = 

            # Record hidden variables
            hiddenV[t-1,:hh.shape[0]] = hh.T
            
            # Record reconstrunted z 
            new_z_dash = Q_t[t-1] * hh
            z_dash = npm.vstack((z_dash, new_z_dash.T))
        
            # Record RSRE
            new_RSRE = RSRE[0,-1] + (((norm(new_z_dash - z_vec)) ** 2) / 
                                    (norm(z_vec) ** 2))                           
            RSRE = npm.vstack((RSRE, mat(new_RSRE))) 
        
            E_t.append(alpha * E_t[-1] + norm(z_vec) ** 2)        # 13 k
                
            E_dash_t.append( alpha * E_dash_t[-1] + norm(hh) ** 2)  # 13 l
        
            if E_dash_t[-1] < energyThresh[0] * E_t[-1] and rr[-1] < N: # 13 m 
        
                z_dag_orthog =  z_vec - Q_t[t] * Q_t[t].T * z_vec 
            
                # try Q[t], not Q[t + 1]
                
                Q_t[t] = npm.bmat([Q_t[t], z_dag_orthog/norm(z_dag_orthog)])
                                                 
                TR = npm.zeros((S_t[t].shape[0], 1))
                BL = npm.zeros((1 ,S_t[t].shape[1]))
                BR = mat(norm(z_dag_orthog) ** 2 )
                                
                S_t[t] = npm.bmat([[S_t[t],  TR],
                                   [  BL  ,  BR]])
                  
                rr.append(rr[-1] + 1)
            
            elif E_dash_t[-1] > energyThresh[1] * E_t[-1] and rr[-1] > 1 :
            
                Q_t[t] = Q_t[t][:, :-1]   # delete the last column of Q_t
        
                S_t[t] = S_t[t][:-1, :-1] # delete last row and colum of S_t 
        
                rr.append(rr[-1] - 1)
        
        else:
            
            # Record hidden variables
            hiddenV[t-1,:hh.shape[0]] = hh.T
            
            # Record reconstrunted z 
            new_z_dash = Q_t[t-1] * hh
            z_dash = npm.vstack((z_dash, new_z_dash.T))
        
            # Record RSRE
            new_RSRE = RSRE[0,-1] + (((norm(new_z_dash - z_vec)) ** 2) / 
                                    (norm(z_vec) ** 2))                           
            RSRE = npm.vstack((RSRE, mat(new_RSRE)))            
            
            # Repeat last entries
            Q_t.append(Q_t[-1])
            S_t.append(S_t[-1])            
            rr.append(rr[-1])  
            E_t.append(E_t[-1])        
            E_dash_t.append(E_dash_t[-1])              
            
            # increment count
            No_inp_count += 1                        
            
    return Q_t, S_t, rr, E_t, E_dash_t, hiddenV, z_dash, RSRE, No_inp_count
コード例 #9
0
def eig_bhatta(X1, X2, kernel, eta, r):
    # Tested. Verified:
    # Poly-kernel RKHS representations of all objects are roughly equal to eigenbasis representations (slight differences for S3)
    # Correctness for X1 ~= X2
    # Close results to empirical bhatta in test_suite_1
    # Remaining issues: Eigendecomposition of centered kernel matrices
    # occasionally produces negative-value eigenvalues
    (n1, d1) = X1.shape
    (n2, d2) = X2.shape
    assert d1 == d2
    n = n1 + n2
    X = mat.bmat("X1;X2")
    (K, Kuc, Kc) = kernel_matrix(X, kernel, n1, n2)
    Kc1 = Kc[0:n1, 0:n1]
    Kc2 = Kc[n1:n, n1:n]

    (Lam1, Alpha1) = eigsh(Kc1, r)
    (Lam2, Alpha2) = eigsh(Kc2, r)
    Alpha1 = matrix(Alpha1)
    Alpha2 = matrix(Alpha2)
    Lam1 = Lam1 / n1
    Lam2 = Lam2 / n2
    Beta1 = mat.zeros((n, r))
    Beta2 = mat.zeros((n, r))

    for i in xrange(r):
        Beta1[0:n1, i] = Alpha1[:, i] / (n1 * Lam1[i])**.5
        Beta2[n1:n, i] = Alpha2[:, i] / (n2 * Lam2[i])**.5

    #Eta = mat.eye((gamma, gamma)) * eta
    Beta = mat.bmat('Beta1, Beta2')
    assert not (any(math.isnan(Beta)))
    Omega = eig_ortho(Kc, Beta)
    mu1_w = mat.sum(Kuc[0:n1, :] * Omega, 0) / n1
    mu2_w = mat.sum(Kuc[n1:n, :] * Omega, 0) / n2

    Eta_w = eta * mat.eye(2 * r)

    S1_w = Omega.T * Kc[:, 0:n1] * Kc[0:n1, :] * Omega / n1
    S2_w = Omega.T * Kc[:, n1:n] * Kc[n1:n, :] * Omega / n2
    S1_w += Eta_w
    S2_w += Eta_w

    mu3_w = .5 * (S1_w.I * mu1_w.T + S2_w.I * mu2_w.T).T
    S3_w = 2 * (S1_w.I + S2_w.I).I

    d1 = la.det(S1_w)**-.25
    d2 = la.det(S2_w)**-.25

    e1 = exp(-mu1_w * S1_w.I * mu1_w.T / 4)
    e2 = exp(-mu2_w * S2_w.I * mu2_w.T / 4)
    d3 = la.det(S3_w)**.5
    e3 = exp(mu3_w * S3_w * mu3_w.T / 2)

    dterm = d1 * d2 * d3
    eterm = e1 * e2 * e3
    rval = float(dterm * eterm)

    if math.isnan(rval):
        rval = -1

    return rval
コード例 #10
0
def entangle(Q, k):  # Q must be an isometry
    D = mix(Q, k)
    C = mix(Q, k)
    return mat.bmat([[D, C], [C, -D]]) / math.sqrt(2.0)
コード例 #11
0
def entangle_with_knives(Q):  # Q must be an isometry
    D = mix_with_knives(Q)
    C = mix_with_knives(Q)
    return mat.bmat([[D, C], [C, -D]]) / math.sqrt(2.0)