コード例 #1
0
def calc_CCuij(U, V):
    """Calculate the cooralation coefficent for anisotropic ADP tensors U
    and V.
    """
    invU = linalg.inverse(U)
    invV = linalg.inverse(V)

    det_invU = linalg.determinant(invU)
    det_invV = linalg.determinant(invV)

    return (math.sqrt(math.sqrt(det_invU * det_invV)) / math.sqrt(
        (1.0 / 8.0) * linalg.determinant(invU + invV)))
コード例 #2
0
ファイル: AtomMath.py プロジェクト: masci/mmLib
def calc_CCuij(U, V):
    """Calculate the correlation coefficient for anisotropic ADP tensors U
    and V.
    """
    ## FIXME: Check for non-positive Uij's, 2009-08-19
    invU = linalg.inverse(U)
    invV = linalg.inverse(V)
    #invU = internal_inv3x3(U)
    #invV = internal_inv3x3(V)
    
    det_invU = linalg.determinant(invU)
    det_invV = linalg.determinant(invV)

    return ( math.sqrt(math.sqrt(det_invU * det_invV)) /
             math.sqrt((1.0/8.0) * linalg.determinant(invU + invV)) )
コード例 #3
0
ファイル: AtomMath.py プロジェクト: Sree-Inventrust/pymmlib
def calc_CCuij(U, V):
    """Calculate the correlation coefficient for anisotropic ADP tensors U
    and V.
    """
    ## FIXME: Check for non-positive Uij's, 2009-08-19
    invU = linalg.inverse(U)
    invV = linalg.inverse(V)
    #invU = internal_inv3x3(U)
    #invV = internal_inv3x3(V)

    det_invU = linalg.determinant(invU)
    det_invV = linalg.determinant(invV)

    return (math.sqrt(math.sqrt(det_invU * det_invV)) / math.sqrt(
        (1.0 / 8.0) * linalg.determinant(invU + invV)))
コード例 #4
0
def KF(y, XF0, VF0, F, H, G, Q, R, limy, ISW, OSW, m, N):
    if OSW == 1:
        XPS = np.zeros((N,m),dtype=np.float); XFS = np.zeros((N,m),dtype=np.float)
        VPS = np.zeros((N,m,m),dtype=np.float); VFS = np.zeros((N,m,m),dtype=np.float)
    XF = XF0; VF = VF0; NSUM = 0.0; SIG2 = 0.0; LDET = 0.0    
    for n in xrange(N):
        # 1期先予測
        XP = np.ndarray.flatten( np.dot(F, XF.T) ) #2週目から縦ベクトルになってしまうので、常に横ベクトルに変換
        VP = np.dot( np.dot(F, VF), F.T ) +  np.dot( np.dot(G, Q), G.T)
        # フィルタ
        # Rは操作しなければ縦ベクトル。pythonは横ベクトルになるので注意!
        if y[n] < limy: 
            NSUM = NSUM + 1
            
            B = np.dot( np.dot(H, VP), H.T)  + R  # Hは数学的には横ベクトル
            B1 = inverse(B) # nvar次元の縦ベクトル
            K = np.matrix(np.dot(VP, H.T)) * np.matrix(B1) # Kは縦ベクトルになる(matrix)
            e = np.array(y[n]).T - np.dot(H, XP.T) # nvar次元の縦ベクトル            
            XF = np.array(XP) + np.array( K * np.matrix(e) ).T # 横ベクトル
            VF = np.array(VP) - np.array( K* np.matrix(H) * VP)           
            SIG2 = SIG2 + np.ndarray.flatten(np.array( np.matrix(e) * np.matrix(B1) * np.matrix(e).T ))[0] # 1次元でも計算できるようにmatrixにする
            LDET = LDET + math.log(linalg.det(B))
        else:
            XF = XP; VF = VP
        if OSW == 1:
            XPS[n,:] = XP; XFS[n,:] = XF; VPS[n,:,:] = VP; VFS[n,:,:] = VF
    SIG2 = SIG2 / NSUM
    if ISW == 0:
        FF = -0.5 * (NSUM * (math.log(2 * np.pi * SIG2) + 1) + LDET)
    else:
        FF = -0.5 * (NSUM * (math.log(2 * np.pi) + SIG2) + LDET)
    if OSW == 0:
        return {'LLF':FF, 'Ovar':SIG2}
    if OSW == 1:
        return {'XPS':XPS, 'XFS':XFS, 'VPS':VPS, 'VFS':VFS, 'LLF':FF, 'Ovar':SIG2}
コード例 #5
0
    def glr_Uellipse(self, position, U, prob):
        """Renders the ellipsoid enclosing the given fractional probability
        given the gaussian variance-covariance matrix U at the given position.
        C=1.8724 = 68%
        """
        ## rotate U
        R  = self.matrix[:3,:3]
        Ur = numpy.matrixmultiply(numpy.matrixmultiply(R, U), numpy.transpose(R))

        Umax = max(linalg.eigenvalues(Ur))
        try:
            limit_radius = Gaussian.GAUSS3C[prob] * MARGIN * math.sqrt(Umax)
        except ValueError:
            limit_radius = 2.0

        try:
            Q = linalg.inverse(Ur)
        except linalg.LinAlgError:
            return
        
        self.object_list.append(
            (14,
             matrixmultiply43(self.matrix, position),
             limit_radius,
             self.material_color_r,
             self.material_color_g,
             self.material_color_b,
             Q,
             -Gaussian.GAUSS3C[prob]**2))
コード例 #6
0
ファイル: UnitCell.py プロジェクト: Sree-Inventrust/pymmlib
    def __init__(self,
                 a = 1.0,
                 b = 1.0,
                 c = 1.0,
                 alpha = 90.0,
                 beta  = 90.0,
                 gamma = 90.0,
                 space_group = "P1",
                 angle_units = "deg"):

        assert angle_units == "deg" or angle_units == "rad"

        self.a = a
        self.b = b
        self.c = c

        if angle_units == "deg":
            self.alpha = math.radians(alpha) 
            self.beta  = math.radians(beta)
            self.gamma = math.radians(gamma)
        elif angle_units == "rad":
            self.alpha = alpha
            self.beta  = beta
            self.gamma = gamma

        self.space_group  = SpaceGroups.GetSpaceGroup(space_group)
        self.orth_to_frac = self.calc_fractionalization_matrix()
        self.frac_to_orth = self.calc_orthogonalization_matrix()

        ## check our math!
        assert numpy.allclose(self.orth_to_frac, linalg.inverse(self.frac_to_orth))
コード例 #7
0
def SMO(XPS, XFS, VPS, VFS, F, GSIG2, k, p, q, m, N):
    XSS =  np.zeros((N,m),dtype=np.float); VSS =  np.zeros((N,m,m),dtype=np.float)
    XS1 = XFS[N-1,:]; VS1 = VFS[N-1,:,:]
    XSS[N-1,:] = XS1; VSS[N-1,:,:] = VS1
    for n1 in xrange(N-1):        
        n = (N-1) - n1; XP = XPS[n,:]; XF = XFS[n-1,:]
        VP = VPS[n,:,:]; VF = VFS[n-1,:,:]; VPI = inverse(VP)
        A = np.dot( np.dot(VF, F.T), VPI)
        XS2 = XF + np.dot(A, (XS1 - XP))
        VS2 = VF + np.dot( np.dot(A, (VS1 - VP)), A.T )
        XS1 = XS2; VS1 = VS2
        XSS[n-1,:] = XS1; VSS[n-1,:,:] = VS1
        
    t=np.arange(N, dtype=np.float); s=np.arange(N, dtype=np.float);
    tv=np.arange(N, dtype=np.float); sv=np.arange(N, dtype=np.float)
 
    if p>0:
        for n in xrange(N):
            t[n]=XSS[n,0]; s[n]=XSS[n,k]
            tv[n]=GSIG2*VSS[n,0,0]
            sv[n]=GSIG2*VSS[n,k,k]
    else:
        for n in xrange(N):
            t[n]=XSS[n,0]; tv[n]=GSIG2*VSS[n,0,0]
    
    return {'trd':t, 'sea':s, 'trv':tv ,'sev':sv}
コード例 #8
0
ファイル: TensorModule.py プロジェクト: lisarosalina/App
    def inverse(self):
        "Returns the inverse of a rank-2 tensor."
	if self.rank == 2:
	    from numpy.oldnumeric.linear_algebra import inverse
	    return Tensor(inverse(self.array))
	else:
	    raise ValueError, 'Undefined operation'
コード例 #9
0
    def test_basic_matrix(self):

        """This test is rather monolithic, but at least it implements
        a concrete example that we can compare with our earlier
        computations.  It also tests the mutual-inverse character of
        the equi-to-diag and diag-to-equi transformations."""

        tolerance = 5.0e-15
        eig = self.diag.compute_eigen_system(self.h_2, tolerance)
        self.diag.compute_diagonal_change()

        eq_type = eig.get_equilibrium_type()
        self.assertEquals(eq_type, self.eq_type)

        eigs = [pair.val for pair in eig.get_raw_eigen_value_vector_pairs()]
        for actual, expected in zip(eigs, self.eig_vals):
            self.assert_(abs(actual-expected) < tolerance, (actual, expected))

        mat = self.diag.get_matrix_diag_to_equi()
        assert self.diag.matrix_is_symplectic(mat)

        sub_diag_into_equi = self.diag.matrix_as_vector_of_row_polynomials(mat)
        mat_inv = LinearAlgebra.inverse(MLab.array(mat))
        sub_equi_into_diag = self.diag.matrix_as_vector_of_row_polynomials(mat_inv)
        h_diag_2 = self.h_2.substitute(sub_diag_into_equi)
        h_2_inv = h_diag_2.substitute(sub_equi_into_diag)
        self.assert_(h_2_inv) #non-zero
        self.assert_(not h_2_inv.is_constant())
        self.assert_(self.lie.is_isograde(h_2_inv, 2))
        self.assert_((self.h_2-h_2_inv).l1_norm() < 1.0e-14)
        comp = Complexifier(self.diag.get_lie_algebra(), eq_type)
        sub_complex_into_real = comp.calc_sub_complex_into_real()
        h_comp_2 = h_diag_2.substitute(sub_complex_into_real)
        h_comp_2 = h_comp_2.with_small_coeffs_removed(tolerance)
        self.assert_(self.lie.is_diagonal_polynomial(h_comp_2))
コード例 #10
0
ファイル: R3DDriver.py プロジェクト: salotz/mmLib
    def glr_Uellipse(self, position, U, prob):
        """Renders the ellipsoid enclosing the given fractional probability
        given the gaussian variance-covariance matrix U at the given position.
        C=1.8724 = 68%
        """
        ## rotate U
        R = self.matrix[:3, :3]
        Ur = numpy.dot(numpy.dot(R, U), numpy.transpose(R))

        Umax = max(linalg.eigenvalues(Ur))
        try:
            limit_radius = Gaussian.GAUSS3C[prob] * MARGIN * math.sqrt(Umax)
        except ValueError:
            limit_radius = 2.0

        try:
            Q = linalg.inverse(Ur)
        except linalg.LinAlgError:
            return

        self.object_list.append(
            (
                14,
                dot43(self.matrix, position),
                limit_radius,
                self.material_color_r,
                self.material_color_g,
                self.material_color_b,
                Q,
                -Gaussian.GAUSS3C[prob] ** 2,
            )
        )
コード例 #11
0
ファイル: AtomMath.py プロジェクト: masci/mmLib
def calc_DP2uij(U, V):
    """Calculate the square of the volumetric difference in the probability
    density function of anisotropic ADP tensors U and V.
    """
    invU = linalg.inverse(U)
    invV = linalg.inverse(V)

    det_invU = linalg.determinant(invU)
    det_invV = linalg.determinant(invV)

    Pu2 = math.sqrt( det_invU / (64.0 * Constants.PI3) )
    Pv2 = math.sqrt( det_invV / (64.0 * Constants.PI3) )
    Puv = math.sqrt(
        (det_invU * det_invV) / (8.0*Constants.PI3 * linalg.determinant(invU + invV)))

    dP2 = Pu2 + Pv2 - (2.0 * Puv)
    
    return dP2
コード例 #12
0
ファイル: chipappx.py プロジェクト: JakaKokosar/orange-bio
    def __init__(self, numPoints, k):
        """numPoints: number of approximation points; k: number of basis functions [2,...,numPoints]"""
        self.numPoints = numPoints
        self.k = k
##        assert k > 1, "Error TrigonomerticBasis: k <= 1"
        assert k <= numPoints, "Error TrigonomerticBasis: k > numPoints"
        # evaluate trigonometric basis functions on the given number of points from [-pi,pi]
        self.x = Numeric.arange(-1*math.pi, math.pi+0.0000001, 2*math.pi/(numPoints-1))
        self.y = Numeric.ones((k, numPoints), Numeric.Float)
        for kk in range(1, k, 2):
##            print "kk, cos %ix" % ((kk+1)/2.)
            self.y[kk] = MLab.cos(self.x*(kk+1)/2) 
        for kk in range(2, k, 2):
##            print "kk, sin %ix" % (kk/2.)
            self.y[kk] = MLab.sin(self.x*kk/2)
        # approx. matrix
        self.Ainv = LinearAlgebra.inverse(Numeric.matrixmultiply(self.y, Numeric.transpose(self.y)))
        self.yyTinvy = Numeric.matrixmultiply(LinearAlgebra.inverse(Numeric.matrixmultiply(self.y, Numeric.transpose(self.y))), self.y)
コード例 #13
0
ファイル: AtomMath.py プロジェクト: Sree-Inventrust/pymmlib
def calc_DP2uij(U, V):
    """Calculate the square of the volumetric difference in the probability
    density function of anisotropic ADP tensors U and V.
    """
    invU = linalg.inverse(U)
    invV = linalg.inverse(V)

    det_invU = linalg.determinant(invU)
    det_invV = linalg.determinant(invV)

    Pu2 = math.sqrt(det_invU / (64.0 * Constants.PI3))
    Pv2 = math.sqrt(det_invV / (64.0 * Constants.PI3))
    Puv = math.sqrt((det_invU * det_invV) /
                    (8.0 * Constants.PI3 * linalg.determinant(invU + invV)))

    dP2 = Pu2 + Pv2 - (2.0 * Puv)

    return dP2
コード例 #14
0
ファイル: KFfunction.py プロジェクト: shimaXX/workspace
def KF(y, XF0, VF0, F, H, G, Q, R, limy, ISW, OSW, m, N):
    if OSW == 1:
        XPS = np.zeros((N, m), dtype=np.float)
        XFS = np.zeros((N, m), dtype=np.float)
        VPS = np.zeros((N, m, m), dtype=np.float)
        VFS = np.zeros((N, m, m), dtype=np.float)
    XF = XF0
    VF = VF0
    NSUM = 0.0
    SIG2 = 0.0
    LDET = 0.0
    for n in xrange(N):
        # 1期先予測
        XP = np.ndarray.flatten(np.dot(F,
                                       XF.T))  #2週目から縦ベクトルになってしまうので、常に横ベクトルに変換
        VP = np.dot(np.dot(F, VF), F.T) + np.dot(np.dot(G, Q), G.T)
        # フィルタ
        # Rは操作しなければ縦ベクトル。pythonは横ベクトルになるので注意!
        if y[n] < limy:
            NSUM = NSUM + 1

            B = np.dot(np.dot(H, VP), H.T) + R  # Hは数学的には横ベクトル
            B1 = inverse(B)  # nvar次元の縦ベクトル
            K = np.matrix(np.dot(VP, H.T)) * np.matrix(
                B1)  # Kは縦ベクトルになる(matrix)
            e = np.array(y[n]).T - np.dot(H, XP.T)  # nvar次元の縦ベクトル
            XF = np.array(XP) + np.array(K * np.matrix(e)).T  # 横ベクトル
            VF = np.array(VP) - np.array(K * np.matrix(H) * VP)
            SIG2 = SIG2 + np.ndarray.flatten(
                np.array(np.matrix(e) * np.matrix(B1) *
                         np.matrix(e).T))[0]  # 1次元でも計算できるようにmatrixにする
            LDET = LDET + math.log(linalg.det(B))
        else:
            XF = XP
            VF = VP
        if OSW == 1:
            XPS[n, :] = XP
            XFS[n, :] = XF
            VPS[n, :, :] = VP
            VFS[n, :, :] = VF
    SIG2 = SIG2 / NSUM
    if ISW == 0:
        FF = -0.5 * (NSUM * (math.log(2 * np.pi * SIG2) + 1) + LDET)
    else:
        FF = -0.5 * (NSUM * (math.log(2 * np.pi) + SIG2) + LDET)
    if OSW == 0:
        return {'LLF': FF, 'Ovar': SIG2}
    if OSW == 1:
        return {
            'XPS': XPS,
            'XFS': XFS,
            'VPS': VPS,
            'VFS': VFS,
            'LLF': FF,
            'Ovar': SIG2
        }
コード例 #15
0
ファイル: rotax.py プロジェクト: 8848/Pymol-script-repo
def interpolate3DTransform(matrixList, indexList, percent):
    """ This function gets input of two list and a percent value.
Return value is a 4x4 matrix corresponding to percent% of the transformation.

matrixList: a list of 4x4 transformation matrix
indexList : a list of sorted index (positive float number)
percent   : a positive float number.
if only one matrix in the matrix list:
percent =   0.0  means no transformation (identity)
            1.0  means 100% of the transformation (returns mat)
            0.58 means 58% of translation and rotatetion 58% of rotation angle
            along the same rotation axis
percent can go above 1.0

If matrixList has more than one matrix:
matrixList=[M1,  M2,  M3]     #Attention: All M uses the same reference frame
indexList =[0.2, 0.5, 1.0]    #Attention: assume the list sorted ascendingly
p = 0.5 means apply M2
p = 0.8 means apply M3
p = 0.9 means apply M2 first, then apply 50% of M'.  M' is the transformation
                    from M2 to M3.   50% = (0.9-0.8) / (1.0-0.8)
                    M2 x M' = M3
                    -->  M2.inverse x M2 x M'= M2.inverse x M3 
                    -->  M'= M2.inverse x M
"""
    listLen = len(matrixList)
    if listLen != len(indexList):
        raise ValueError("matrix list should have same length of index list")
    if listLen == 0:
        raise ValueError("no matrix found in the matrix list")

    offset = -1
    for i in range(listLen):
        if indexList[i] >= percent:
            offset = i
            break

    prevMat = nextMat = N.identity(4,'f')
    if offset == -1:
        prevMat = matrixList[-1]
        p = percent/indexList[-1]
        return _interpolateMat(matrixList[-1], p)
    elif offset == 0:
        nextMat = matrixList[0]
        p = percent/indexList[0]
        return _interpolateMat(N.array(matrixList[0]), p)
    else:
        prevMat = matrixList[offset-1]
        nextMat = matrixList[offset]
        p = (percent-indexList[offset-1])/(
                                    indexList[offset]-indexList[offset-1])
        from numpy.oldnumeric.linear_algebra import inverse
        M = N.dot(inverse(prevMat), nextMat)
        Mat = _interpolateMat(M, p)
        return N.dot(prevMat, Mat)
コード例 #16
0
def interpolate3DTransform(matrixList, indexList, percent):
    """ This function gets input of two list and a percent value.
Return value is a 4x4 matrix corresponding to percent% of the transformation.

matrixList: a list of 4x4 transformation matrix
indexList : a list of sorted index (positive float number)
percent   : a positive float number.
if only one matrix in the matrix list:
percent =   0.0  means no transformation (identity)
            1.0  means 100% of the transformation (returns mat)
            0.58 means 58% of translation and rotatetion 58% of rotation angle
            along the same rotation axis
percent can go above 1.0

If matrixList has more than one matrix:
matrixList=[M1,  M2,  M3]     #Attention: All M uses the same reference frame
indexList =[0.2, 0.5, 1.0]    #Attention: assume the list sorted ascendingly
p = 0.5 means apply M2
p = 0.8 means apply M3
p = 0.9 means apply M2 first, then apply 50% of M'.  M' is the transformation
                    from M2 to M3.   50% = (0.9-0.8) / (1.0-0.8)
                    M2 x M' = M3
                    -->  M2.inverse x M2 x M'= M2.inverse x M3 
                    -->  M'= M2.inverse x M
"""
    listLen = len(matrixList)
    if listLen != len(indexList):
        raise ValueError("matrix list should have same length of index list")
    if listLen == 0:
        raise ValueError("no matrix found in the matrix list")

    offset = -1
    for i in range(listLen):
        if indexList[i] >= percent:
            offset = i
            break

    prevMat = nextMat = N.identity(4, 'f')
    if offset == -1:
        prevMat = matrixList[-1]
        p = percent / indexList[-1]
        return _interpolateMat(matrixList[-1], p)
    elif offset == 0:
        nextMat = matrixList[0]
        p = percent / indexList[0]
        return _interpolateMat(N.array(matrixList[0]), p)
    else:
        prevMat = matrixList[offset - 1]
        nextMat = matrixList[offset]
        p = (percent - indexList[offset - 1]) / (indexList[offset] -
                                                 indexList[offset - 1])
        from numpy.oldnumeric.linear_algebra import inverse
        M = N.dot(inverse(prevMat), nextMat)
        Mat = _interpolateMat(M, p)
        return N.dot(prevMat, Mat)
コード例 #17
0
ファイル: KF.py プロジェクト: shimaXX/workspace
 def filtering(self, y, XP, VP):
     if y < self.limy: 
         B = np.dot( np.dot(self.H, VP), self.H.T)  + self.R  # Hは数学的には横ベクトル
         B1 = inverse(B)
         K = np.matrix(np.dot(VP, self.H.T)) * np.matrix(B1) # Kは縦ベクトルになる(matrix)
         e = np.array(y).T - np.dot(self.H, XP.T)            
         XF = np.array(XP) + np.array( K * np.matrix(e) ).T # 横ベクトル
         VF = np.array(VP) - np.array( K* np.matrix(self.H) * VP)           
         self.SIG2 += np.ndarray.flatten(np.array( np.matrix(e) * np.matrix(B1) * np.matrix(e).T ))[0] # 1次元でも計算できるようにmatrixにする
         self.LDET += log(linalg.det(B))
     else:
         XF = XP; VF = VP
     return XF, VF
コード例 #18
0
def SMO(XPS, XFS, VPS, VFS, F, GSIG2, k, p, q, m, N):
    XSS =  np.zeros((N,m),dtype=np.float); VSS =  np.zeros((N,m,m),dtype=np.float)
    XS1 = XFS[N-1,:]; VS1 = VFS[N-1,:,:]
    XSS[N-1,:] = XS1; VSS[N-1,:,:] = VS1
    for n1 in xrange(N-1):        
        n = (N-1) - n1; XP = XPS[n,:]; XF = XFS[n-1,:]
        VP = VPS[n,:,:]; VF = VFS[n-1,:,:]; VPI = inverse(VP)
        A = np.dot( np.dot(VF, F.T), VPI)
        XS2 = XF + np.dot(A, (XS1 - XP))
        VS2 = VF + np.dot( np.dot(A, (VS1 - VP)), A.T )
        XS1 = XS2; VS1 = VS2
        XSS[n-1,:] = XS1; VSS[n-1,:,:] = VS1
    return {'XSS':XSS, 'VSS':VSS}
コード例 #19
0
 def __init__(self, numPoints, k):
     """numPoints: number of approximation points; k: number of basis functions [2,...,numPoints]"""
     self.numPoints = numPoints
     self.k = k
     ##        assert k > 1, "Error TrigonomerticBasis: k <= 1"
     assert k <= numPoints, "Error TrigonomerticBasis: k > numPoints"
     # evaluate trigonometric basis functions on the given number of points from [-pi,pi]
     self.x = Numeric.arange(-1 * math.pi, math.pi + 0.0000001,
                             2 * math.pi / (numPoints - 1))
     self.y = Numeric.ones((k, numPoints), Numeric.Float)
     for kk in range(1, k, 2):
         ##            print "kk, cos %ix" % ((kk+1)/2.)
         self.y[kk] = MLab.cos(self.x * (kk + 1) / 2)
     for kk in range(2, k, 2):
         ##            print "kk, sin %ix" % (kk/2.)
         self.y[kk] = MLab.sin(self.x * kk / 2)
     # approx. matrix
     self.Ainv = LinearAlgebra.inverse(
         Numeric.matrixmultiply(self.y, Numeric.transpose(self.y)))
     self.yyTinvy = Numeric.matrixmultiply(
         LinearAlgebra.inverse(
             Numeric.matrixmultiply(self.y, Numeric.transpose(self.y))),
         self.y)
コード例 #20
0
ファイル: filter.py プロジェクト: zlingBryan/uavs
def state_equation(x, t0, u):
    ''' Defined by Jeffsan Wang
        The state equation, dx/dt = f(x,t0,u)
        Computes the derivative of state at time t0 on the condition of input u.
        x[0:3] --> Position in ned frame
        x[3:6] --> Euler angle of body frame expressed in inertial frame
        x[6:9] --> Velocity in aircraft body frame
        x[9]   --> Bais in Yaw direction of body frame
        
        u[0:3] --> Accelaration in body frame
        u[3:6] --> Angle rate of body frame expressed in inertial frame  '''

    [pos, eul, vel, bias] = [x[0:3], x[3:6], x[6:9], x[9]]
    [ax, ay, az, wx, wy, wz] = [u[0], u[1], u[2], u[3], u[4], u[5]]
    [phi, theta, psi] = [eul[0], eul[1], eul[2]]
    [vx, vy, vz] = [vel[0], vel[1], vel[2]]

    #positon transition
    [cp, sp, ct, st, cs,
     ss] = [cos(phi),
            sin(phi),
            cos(theta),
            sin(theta),
            cos(psi),
            sin(psi)]
    T = array([[ct * cs, ct * ss, -st],
               [sp * st * cs - cp * ss, sp * st * ss + cp * cs, sp * ct],
               [cp * st * cs + sp * ss, cp * st * ss - sp * cs, cp * ct]])
    dev_pos = dot(inverse(T), vel)

    #euler angle transition
    tt = tan(theta)
    R = array([[1, sp * tt, cp * tt], [0, cp, -sp], [0, sp / ct, cp / ct]])
    #print "R",R
    dev_euler = dot(R, [wx, wy, wz])
    #print 'dev_euler', dev_euler

    #veloctiy transition
    dev_vx = ax - g * st - wy * vz + wz * vy
    dev_vy = ay + g * ct * sp - wz * vx + wx * vz
    dev_vz = az + g * ct * cp - wx * vy + wy * vx
    dev_vel = [dev_vx, dev_vy, dev_vz]

    #yaw bias transition
    dev_bias = 0

    #merge state transition
    dev_x = hstack((dev_pos, dev_euler, dev_vel, dev_bias))
    #print 'dev_x ', dev_x
    return dev_x
コード例 #21
0
ファイル: KF.py プロジェクト: shimaXX/workspace
 def SMO(self):
     """fixed-interval smoothing"""
     XS1 = self.XFS[self.term-1]
     VS1 = self.VFS[self.term-1]
     self.XSS[self.term-1] = XS1
     self.VSS[self.term-1] = VS1
     for n1 in xrange(self.term):        
         n = (self.term-1) - n1; XP = self.XPS[n]; XF = self.XFS[n-1]
         VP = self.VPS[n]; VF = self.VFS[n-1]; VPI = inverse(VP)
         A = np.dot( np.dot(VF, self.F.T), VPI)
         XS2 = XF + np.dot(A, (XS1 - XP))
         VS2 = VF + np.dot( np.dot(A, (VS1 - VP)), A.T )
         XS1 = XS2; VS1 = VS2
         self.XSS[n-1] = XS1
         self.VSS[n-1] = VS1
コード例 #22
0
ファイル: filter.py プロジェクト: JeffsanC/uavs
def state_equation(x, t0, u):
    ''' Defined by Jeffsan Wang
        The state equation, dx/dt = f(x,t0,u)
        Computes the derivative of state at time t0 on the condition of input u.
        x[0:3] --> Position in ned frame
        x[3:6] --> Euler angle of body frame expressed in inertial frame
        x[6:9] --> Velocity in aircraft body frame
        x[9]   --> Bais in Yaw direction of body frame
        
        u[0:3] --> Accelaration in body frame
        u[3:6] --> Angle rate of body frame expressed in inertial frame  '''

    [pos, eul, vel, bias]    = [x[0:3], x[3:6], x[6:9], x[9]]
    [ax, ay, az, wx, wy, wz] = [u[0], u[1], u[2], u[3], u[4], u[5]]        
    [phi, theta, psi]        = [eul[0], eul[1], eul[2]]
    [vx, vy, vz]             = [vel[0], vel[1], vel[2]]
    
    #positon transition
    [cp, sp, ct, st, cs, ss] = [cos(phi), sin(phi), cos(theta), 
                                sin(theta), cos(psi), sin(psi)]   
    T = array([[        ct*cs,          ct*ss,        -st ],
               [sp*st*cs - cp*ss, sp*st*ss + cp*cs,  sp*ct],
               [cp*st*cs + sp*ss, cp*st*ss - sp*cs,  cp*ct]])
    dev_pos   = dot(inverse(T), vel)

    
    #euler angle transition
    tt = tan(theta)
    R = array([[1, sp * tt, cp * tt ],
               [0,    cp,     -sp   ],
               [0, sp / ct, cp / ct ]])
    #print "R",R
    dev_euler = dot(R, [wx, wy, wz])
    #print 'dev_euler', dev_euler
    
    #veloctiy transition
    dev_vx = ax - g * st      - wy * vz + wz * vy
    dev_vy = ay + g * ct * sp - wz * vx + wx * vz
    dev_vz = az + g * ct * cp - wx * vy + wy * vx
    dev_vel = [dev_vx, dev_vy, dev_vz]
    
    #yaw bias transition
    dev_bias = 0
    
    #merge state transition
    dev_x = hstack((dev_pos, dev_euler, dev_vel, dev_bias))
    #print 'dev_x ', dev_x
    return dev_x
コード例 #23
0
 def _gaussian(self, mean, cvm, x):
     m = len(mean)
     assert cvm.shape == (m, m), \
         'bad sized covariance matrix, %s' % str(cvm.shape)
     try:
         det = LinearAlgebra.determinant(cvm)
         inv = LinearAlgebra.inverse(cvm)
         a = det ** -0.5 * (2 * Numeric.pi) ** (-m / 2.0) 
         dx = x - mean
         b = -0.5 * Numeric.matrixmultiply( \
                 Numeric.matrixmultiply(dx, inv), dx)
         return a * Numeric.exp(b) 
     except OverflowError:
         # happens when the exponent is negative infinity - i.e. b = 0
         # i.e. the inverse of cvm is huge (cvm is almost zero)
         return 0
コード例 #24
0
 def filtering(self, y, XP, VP):
     if y < self.limy:
         B = np.dot(np.dot(self.H, VP), self.H.T) + self.R  # Hは数学的には横ベクトル
         B1 = inverse(B)
         K = np.matrix(np.dot(VP, self.H.T)) * np.matrix(
             B1)  # Kは縦ベクトルになる(matrix)
         e = np.array(y).T - np.dot(self.H, XP.T)
         XF = np.array(XP) + np.array(K * np.matrix(e)).T  # 横ベクトル
         VF = np.array(VP) - np.array(K * np.matrix(self.H) * VP)
         self.SIG2 += np.ndarray.flatten(
             np.array(np.matrix(e) * np.matrix(B1) *
                      np.matrix(e).T))[0]  # 1次元でも計算できるようにmatrixにする
         self.LDET += log(linalg.det(B))
     else:
         XF = XP
         VF = VP
     return XF, VF
コード例 #25
0
 def setNormalization(self, normalization):
     if normalization == OrthPolyBasis.NORM_NONE:
         self.T = self._T0
     elif normalization == OrthPolyBasis.NORM_NORM:
         self.T = self._T1
     elif normalization == OrthPolyBasis.NORM_NORM_T0_1:
         self.T = self._T2
     elif normalization == OrthPolyBasis.NORM_END1:
         self.T = self._T3
     else:
         raise "Error: unknown normalization: " + str(normalization)
     self.TT = Numeric.matrixmultiply(self.T, Numeric.transpose(self.T))
     self.TTinv = LinearAlgebra.inverse(self.TT)
     self.TTinvT = Numeric.matrixmultiply(self.TTinv, self.T)
     self.basisCoef = self._getBasisCoef(self.x, self.T)
     self._normalization = normalization
     self._checkOrth(self.T, self.TT, output=self._force)
コード例 #26
0
ファイル: chipappx.py プロジェクト: JakaKokosar/orange-bio
 def setNormalization(self, normalization):
     if normalization == OrthPolyBasis.NORM_NONE:
         self.T = self._T0
     elif normalization == OrthPolyBasis.NORM_NORM:
         self.T = self._T1
     elif normalization == OrthPolyBasis.NORM_NORM_T0_1:
         self.T = self._T2
     elif normalization == OrthPolyBasis.NORM_END1:
         self.T = self._T3
     else:
         raise "Error: unknown normalization: " + str(normalization)
     self.TT = Numeric.matrixmultiply(self.T, Numeric.transpose(self.T))
     self.TTinv = LinearAlgebra.inverse(self.TT)
     self.TTinvT = Numeric.matrixmultiply(self.TTinv, self.T)
     self.basisCoef = self._getBasisCoef(self.x, self.T)
     self._normalization = normalization
     self._checkOrth(self.T, self.TT, output = self._force)
コード例 #27
0
    def get_matrix_equi_to_diag(self):
        """

        The matrix which maps a vetor in the real equilibrium
        coordinate system into the corresponding vector in the real
        diagonal coordinate system.  One can take a polynomial
        expression in terms of the real diagonal coordinates and
        convert it into an expression in the real equilibrium
        coordinates by:-

         1. express the matrix as a vector of linear row-polynomials,
            denoted diag_in_equi, i.e., diagonal coordinates in terms
            of equilibrium ones.

         2. poly_in_equi = poly_in_diag.substitute(diag_in_equi).

        """
        return inverse(self.matrix_diag_to_equi)
コード例 #28
0
ファイル: Diagonal.py プロジェクト: Peter-Collins/NormalForm
    def get_matrix_equi_to_diag(self):
        """

        The matrix which maps a vetor in the real equilibrium
        coordinate system into the corresponding vector in the real
        diagonal coordinate system.  One can take a polynomial
        expression in terms of the real diagonal coordinates and
        convert it into an expression in the real equilibrium
        coordinates by:-

         1. express the matrix as a vector of linear row-polynomials,
            denoted diag_in_equi, i.e., diagonal coordinates in terms
            of equilibrium ones.

         2. poly_in_equi = poly_in_diag.substitute(diag_in_equi).

        """
        return inverse(self.matrix_diag_to_equi)
コード例 #29
0
    def __call__(self, inMatrices=None, applyIndex=None):
        """outMatrices <- SymInverse(inMatrices, applyIndex=None)
        inMatrices: list of 4x4 matrices
        outMatrices: list of 4x4 matrices
        """

        import numpy.oldnumeric.linear_algebra as LinearAlgebra 

        if not inMatrices:
            inMatrices = [Numeric.identity(4).astype('f')]

        matrices = Numeric.array(inMatrices)
        assert matrices.shape[-2] == 4 and matrices.shape[-1] == 4

        out = []
        for im in matrices: #loop over node's incoming matrices
            out.append( LinearAlgebra.inverse(im) )
        return out
コード例 #30
0
 def SMO(self):
     """fixed-interval smoothing"""
     XS1 = self.XFS[self.term - 1]
     VS1 = self.VFS[self.term - 1]
     self.XSS[self.term - 1] = XS1
     self.VSS[self.term - 1] = VS1
     for n1 in xrange(self.term):
         n = (self.term - 1) - n1
         XP = self.XPS[n]
         XF = self.XFS[n - 1]
         VP = self.VPS[n]
         VF = self.VFS[n - 1]
         VPI = inverse(VP)
         A = np.dot(np.dot(VF, self.F.T), VPI)
         XS2 = XF + np.dot(A, (XS1 - XP))
         VS2 = VF + np.dot(np.dot(A, (VS1 - VP)), A.T)
         XS1 = XS2
         VS1 = VS2
         self.XSS[n - 1] = XS1
         self.VSS[n - 1] = VS1
コード例 #31
0
ファイル: KFfunction.py プロジェクト: shimaXX/workspace
def SMO(XPS, XFS, VPS, VFS, F, GSIG2, k, p, q, m, N):
    XSS = np.zeros((N, m), dtype=np.float)
    VSS = np.zeros((N, m, m), dtype=np.float)
    XS1 = XFS[N - 1, :]
    VS1 = VFS[N - 1, :, :]
    XSS[N - 1, :] = XS1
    VSS[N - 1, :, :] = VS1
    for n1 in xrange(N - 1):
        n = (N - 1) - n1
        XP = XPS[n, :]
        XF = XFS[n - 1, :]
        VP = VPS[n, :, :]
        VF = VFS[n - 1, :, :]
        VPI = inverse(VP)
        A = np.dot(np.dot(VF, F.T), VPI)
        XS2 = XF + np.dot(A, (XS1 - XP))
        VS2 = VF + np.dot(np.dot(A, (VS1 - VP)), A.T)
        XS1 = XS2
        VS1 = VS2
        XSS[n - 1, :] = XS1
        VSS[n - 1, :, :] = VS1

    t = np.arange(N, dtype=np.float)
    s = np.arange(N, dtype=np.float)
    tv = np.arange(N, dtype=np.float)
    sv = np.arange(N, dtype=np.float)

    if p > 0:
        for n in xrange(N):
            t[n] = XSS[n, 0]
            s[n] = XSS[n, k]
            tv[n] = GSIG2 * VSS[n, 0, 0]
            sv[n] = GSIG2 * VSS[n, k, k]
    else:
        for n in xrange(N):
            t[n] = XSS[n, 0]
            tv[n] = GSIG2 * VSS[n, 0, 0]

    return {'trd': t, 'sea': s, 'trv': tv, 'sev': sv}
コード例 #32
0
def SMO(XPS, XFS, VPS, VFS, F, GSIG2, k, p, q, m, N):
    XSS = np.zeros((N, m), dtype=np.float)
    VSS = np.zeros((N, m, m), dtype=np.float)
    XS1 = XFS[N - 1, :]
    VS1 = VFS[N - 1, :, :]
    XSS[N - 1, :] = XS1
    VSS[N - 1, :, :] = VS1
    for n1 in xrange(N - 1):
        n = (N - 1) - n1
        XP = XPS[n, :]
        XF = XFS[n - 1, :]
        VP = VPS[n, :, :]
        VF = VFS[n - 1, :, :]
        VPI = inverse(VP)
        A = np.dot(np.dot(VF, F.T), VPI)
        XS2 = XF + np.dot(A, (XS1 - XP))
        VS2 = VF + np.dot(np.dot(A, (VS1 - VP)), A.T)
        XS1 = XS2
        VS1 = VS2
        XSS[n - 1, :] = XS1
        VSS[n - 1, :, :] = VS1
    return {'XSS': XSS, 'VSS': VSS}
コード例 #33
0
ファイル: rotax.py プロジェクト: 8848/Pymol-script-repo
def interpolate3DTransform1(matrixList, indexList, percent):
    # MS version that does not assume identity as fist matrix and does
    # not wrap around

    if percent <= indexList[0]:
        return matrixList[0]

    if percent >=indexList[-1]:
        return matrixList[-1]
    
    listLen = len(indexList)
    for i in range(listLen):
        if indexList[i] > percent:
            break

    prevMat = matrixList[i-1]
    nextMat = matrixList[i]
    from numpy.oldnumeric.linear_algebra import inverse
    M = N.dot(inverse(prevMat), nextMat)
    p = (percent-indexList[i-1]) / (indexList[i]-indexList[i-1])
    Mat = _interpolateMat(M, p)
    return N.dot(prevMat, Mat)
コード例 #34
0
def interpolate3DTransform1(matrixList, indexList, percent):
    # MS version that does not assume identity as fist matrix and does
    # not wrap around

    if percent <= indexList[0]:
        return matrixList[0]

    if percent >= indexList[-1]:
        return matrixList[-1]

    listLen = len(indexList)
    for i in range(listLen):
        if indexList[i] > percent:
            break

    prevMat = matrixList[i - 1]
    nextMat = matrixList[i]
    from numpy.oldnumeric.linear_algebra import inverse
    M = N.dot(inverse(prevMat), nextMat)
    p = (percent - indexList[i - 1]) / (indexList[i] - indexList[i - 1])
    Mat = _interpolateMat(M, p)
    return N.dot(prevMat, Mat)
コード例 #35
0
ファイル: weight.py プロジェクト: weikang9009/stars
 def sartran(self, rho, x, force=0, precis=DELTA):
     n = len(x)
     listflag = 0
     if type(x) == list:
         x = Numeric.array(x, Numeric.Float)
         listflag = 1
     sarx = Numeric.zeros(n, Numeric.Float)
     if n > WT_SMALL or force:
         sarx = x
         wx = self.splag(x) * rho
         sarx += wx
         while max(wx) > precis:
             wx = self.splag(wx) * rho
             sarx += wx
     else:  # small weights full matrix inverse
         w = self.wt2mat()
         w *= -rho
         w += Numeric.identity(n)
         wx = LinearAlgebra.inverse(w)
         sarx = Numeric.matrixmultiply(wx, x)
     if listflag:
         return sarx.tolist()
     else:
         return sarx
コード例 #36
0
ファイル: weight.py プロジェクト: DiFang/stars
 def sartran(self,rho,x,force=0,precis=DELTA):
     n = len(x)
     listflag = 0
     if type(x) == list:
         x = Numeric.array(x,Numeric.Float)
         listflag = 1
     sarx = Numeric.zeros(n,Numeric.Float)
     if n > WT_SMALL or force:
         sarx = x
         wx = self.splag(x) * rho
         sarx += wx
         while max(wx) > precis:
             wx = self.splag(wx) * rho
             sarx += wx
     else:   # small weights full matrix inverse
         w = self.wt2mat()
         w *= - rho
         w += Numeric.identity(n)
         wx = LinearAlgebra.inverse(w)
         sarx = Numeric.matrixmultiply(wx,x)
     if listflag:
         return sarx.tolist()
     else:
         return sarx
コード例 #37
0
    def test_basic_matrix(self):
        """This test is rather monolithic, but at least it implements
        a concrete example that we can compare with our earlier
        computations.  It also tests the mutual-inverse character of
        the equi-to-diag and diag-to-equi transformations."""

        tolerance = 5.0e-15
        eig = self.diag.compute_eigen_system(self.h_2, tolerance)
        self.diag.compute_diagonal_change()

        eq_type = eig.get_equilibrium_type()
        self.assertEquals(eq_type, self.eq_type)

        eigs = [pair.val for pair in eig.get_raw_eigen_value_vector_pairs()]
        for actual, expected in zip(eigs, self.eig_vals):
            self.assert_(
                abs(actual - expected) < tolerance, (actual, expected))

        mat = self.diag.get_matrix_diag_to_equi()
        assert self.diag.matrix_is_symplectic(mat)

        sub_diag_into_equi = self.diag.matrix_as_vector_of_row_polynomials(mat)
        mat_inv = LinearAlgebra.inverse(MLab.array(mat))
        sub_equi_into_diag = self.diag.matrix_as_vector_of_row_polynomials(
            mat_inv)
        h_diag_2 = self.h_2.substitute(sub_diag_into_equi)
        h_2_inv = h_diag_2.substitute(sub_equi_into_diag)
        self.assert_(h_2_inv)  #non-zero
        self.assert_(not h_2_inv.is_constant())
        self.assert_(self.lie.is_isograde(h_2_inv, 2))
        self.assert_((self.h_2 - h_2_inv).l1_norm() < 1.0e-14)
        comp = Complexifier(self.diag.get_lie_algebra(), eq_type)
        sub_complex_into_real = comp.calc_sub_complex_into_real()
        h_comp_2 = h_diag_2.substitute(sub_complex_into_real)
        h_comp_2 = h_comp_2.with_small_coeffs_removed(tolerance)
        self.assert_(self.lie.is_diagonal_polynomial(h_comp_2))
コード例 #38
0
def LinearLeastSquaresFit(model0,
                          parameters0,
                          data0,
                          maxiter,
                          constrains0,
                          weightflag,
                          model_deriv=None,
                          deltachi=0.01,
                          fulloutput=0,
                          xdata=None,
                          ydata=None,
                          sigmadata=None):
    #get the codes:
    # 0 = Free       1 = Positive     2 = Quoted
    # 3 = Fixed      4 = Factor       5 = Delta
    # 6 = Sum        7 = ignored
    constrains = [[], [], []]
    if len(constrains0) == 0:
        for i in range(len(parameters0)):
            constrains[0].append(0)
            constrains[1].append(0)
            constrains[2].append(0)
    else:
        for i in range(len(parameters0)):
            constrains[0].append(constrains0[0][i])
            constrains[1].append(constrains0[1][i])
            constrains[2].append(constrains0[2][i])
    for i in range(len(parameters0)):
        if type(constrains[0][i]) == type('string'):
            #get the number
            if constrains[0][i] == "FREE":
                constrains[0][i] = CFREE
            elif constrains[0][i] == "POSITIVE":
                constrains[0][i] = CPOSITIVE
            elif constrains[0][i] == "QUOTED":
                constrains[0][i] = CQUOTED
            elif constrains[0][i] == "FIXED":
                constrains[0][i] = CFIXED
            elif constrains[0][i] == "FACTOR":
                constrains[0][i] = CFACTOR
                constrains[1][i] = int(constrains[1][i])
            elif constrains[0][i] == "DELTA":
                constrains[0][i] = CDELTA
                constrains[1][i] = int(constrains[1][i])
            elif constrains[0][i] == "SUM":
                constrains[0][i] = CSUM
                constrains[1][i] = int(constrains[1][i])
            elif constrains[0][i] == "IGNORED":
                constrains[0][i] = CIGNORED
            elif constrains[0][i] == "IGNORE":
                constrains[0][i] = CIGNORED
            else:
                #I should raise an exception
                #constrains[0][i] = 0
                raise ValueError, "Unknown constraint %s" % constrains[0][i]
        if (constrains[0][i] == CQUOTED):
            raise ValueError, "Linear fit cannot handle quoted constraint"
    # make a local copy of the function for an easy speed up ...
    model = model0
    parameters = array(parameters0)
    if data0 is not None:
        selfx = array(map(lambda x: x[0], data0))
        selfy = array(map(lambda x: x[1], data0))
    else:
        selfx = xdata
        selfy = ydata
    selfweight = ones(selfy.shape, Float)
    nr0 = len(selfy)
    if data0 is not None:
        nc = len(data0[0])
    else:
        if sigmadata is None:
            nc = 2
        else:
            nc = 3
    if weightflag == 1:
        if nc == 3:
            #dummy = abs(data[0:nr0:inc,2])
            if data0 is not None:
                dummy = abs(array(map(lambda x: x[2], data0)))
            else:
                dummy = abs(array(sigmadata))
            selfweight = 1.0 / (dummy + equal(dummy, 0))
            selfweight = selfweight * selfweight
        else:
            selfweight = 1.0 / (abs(selfy) + equal(abs(selfy), 0))
    n_param = len(parameters)
    #linear fit, use at own risk since there is no check for the
    #function being linear on its parameters.
    #Only the fixed constrains are handled properly
    x = selfx
    y = selfy
    weight = selfweight
    iter = maxiter
    niter = 0
    newpar = parameters.__copy__()
    while (iter > 0):
        niter += 1
        chisq0, alpha0, beta,\
        n_free, free_index, noigno, fitparam, derivfactor  =ChisqAlphaBeta(
                                                 model,newpar,
                                                 x,y,weight,constrains,model_deriv=model_deriv,
                                                 linear=1)
        print "A", chisq0

        nr, nc = alpha0.shape
        fittedpar = dot(beta, inverse(alpha0))
        #check respect of constraints (only positive is handled -force parameter to 0 and fix it-)
        error = 0
        for i in range(n_free):
            if constrains[0][free_index[i]] == CPOSITIVE:
                if fittedpar[0, i] < 0:
                    #fix parameter to 0.0 and re-start the fit
                    newpar[free_index[i]] = 0.0
                    constrains[0][free_index[i]] = CFIXED
                    error = 1
        if error:
            continue
        for i in range(n_free):
            newpar[free_index[i]] = fittedpar[0, i]
        newpar = array(getparameters(newpar, constrains))
        iter = -1
    yfit = model(newpar, x)
    chisq = sum(weight * (y - yfit) * (y - yfit))
    sigma0 = sqrt(abs(diagonal(inverse(alpha0))))
    sigmapar = getsigmaparameters(newpar, sigma0, constrains)
    lastdeltachi = chisq
    if not fulloutput:
        return newpar.tolist(), chisq / (len(y) -
                                         len(sigma0)), sigmapar.tolist()
    else:
        return newpar.tolist(), chisq / (
            len(y) - len(sigma0)), sigmapar.tolist(), niter, lastdeltachi
コード例 #39
0
def NMkernel(sita, H, D, Vsita):
    res = sita - np.dot(H.T, D)
    return np.dot( np.dot(res.T, inverse(Vsita)), res )
コード例 #40
0
 # step4--calculate_spending_habits_param_lambd=Sita_lmbd
 pool = Pool(processes=4)
 tmp = np.array(
     pool.map(calculate_spending_habits_param_lambd,
              ((hh, u, Xs, Sita_lmbd, Hlmbd, Vsita_lmbd, Ztld)
               for hh in xrange(nhh))))
 pool.close()
 pool.join()
 Sita_lmbd = tmp[:, 0]
 rej_lmbd += tmp[:, 1]
 ### step5--------------------------------------
 ## dlt側の算出----
 # 多変量正規分布のパラメタの算出
 D2 = np.dot(D.T, D)
 D2pA0 = D2 + A0
 Hhat_dlt = np.dot(np.dot(inverse(D2), D.T), Sita_dlt)
 Dtld = np.dot(
     inverse(D2pA0),
     (np.dot(D2, Hhat_dlt) + np.dot(A0, np.ndarray.flatten(m0))))
 rtld = np.ndarray.flatten(Dtld)
 sig = np.array(np.kron(Vsita_dlt, inverse(D2pA0)).T)
 # 多変量正規分布でサンプリング
 Hdlt = np.ndarray.flatten(
     hbm.randn_multivariate(rtld, np.matrix(sig), n=nvar))
 ##-----------------
 ## lmbd側の算出----
 # 多変量正規分布のパラメタの算出
 Hhat_lmbd = np.dot(np.dot(inverse(D2), D.T), Sita_lmbd)
 Dtld = np.dot(
     inverse(D2pA0),
     (np.dot(D2, Hhat_lmbd) + np.dot(A0, np.ndarray.flatten(m0))))
コード例 #41
0
def NMkernel(sita, H, D, Vsita):
    res = sita - np.dot(H.T, D)
    return np.dot(np.dot(res.T, inverse(Vsita)), res)
コード例 #42
0
 pool.join()
 # step3--calculate difference
 Sita_sys = calculate_difference_m(Xs)
 # step4--calculate_spending_habits_param_delta=Sita_dlt
 Sita_dlt, rej_dlt = calculate_spending_habits_param_delta_m(
     (u, Xs, Sita_dlt, Hdlt, Vsita_dlt, Ztld, rej_dlt))
 # step4--calculate_spending_habits_param_lambd=Sita_lmbd
 Sita_lmbd, rej_lmbd = calculate_spending_habits_param_lambd_m(
     (u, Xs, Sita_lmbd, Hlmbd, Vsita_lmbd, Ztld, rej_lmbd))
 ### step5--------------------------------------
 ## dlt側の算出----
 # 多変量正規分布のパラメタの算出
 D2 = np.dot(D.T, D)
 D2pA0 = D2 + A0
 Hhat_dlt = np.ndarray.flatten(
     np.dot(np.dot(inverse(D2), D.T), Sita_dlt.T))
 Dtld = np.dot(
     inverse(D2pA0),
     (np.dot(D2, Hhat_dlt) + np.dot(A0, np.ndarray.flatten(m0))))
 rtld = np.ndarray.flatten(Dtld)
 sig = np.array(np.kron(Vsita_dlt, inverse(D2pA0)).T)
 # 多変量正規分布でサンプリング
 Hdlt = np.ndarray.flatten(
     hbm.randn_multivariate(rtld, np.matrix(sig), n=nvar))
 ##-----------------
 ## lmbd側の算出----
 # 多変量正規分布のパラメタの算出
 Hhat_lmbd = np.ndarray.flatten(
     np.dot(np.dot(inverse(D2), D.T), Sita_lmbd.T))
 Dtld = np.dot(
     inverse(D2pA0),
     alpha = min(1, new_Lsita_lmbd / old_Lsita_lmbd)
     if alpha == None:
         alpha = -1
     uni = ss.uniform.rvs(loc=0, scale=1, size=1)
     if uni < alpha:
         Sita_lmbd[hh] = new_sita_lmbd
     else:
         rej_lmbd[hh] = rej_lmbd[hh] + 1
     # --------------------------------------------
 #
 ### step5--------------------------------------
 ## dlt側の算出----
 # 多変量正規分布のパラメタの算出
 D2 = np.dot(D.T, D)
 D2pA0 = D2 + A0
 Hhat_dlt = np.dot(np.dot(inverse(D2), D.T), Sita_dlt)
 Dtld = np.dot(inverse(D2pA0), (np.dot(D2, Hhat_dlt) + np.dot(A0, np.ndarray.flatten(m0))))
 rtld = np.ndarray.flatten(Dtld)
 sig = np.array([D2pA0 * Vsita_dlt[i] for i in range(Vsita_dlt.shape[0])])
 # 多変量正規分布でサンプリング
 Hdlt = np.ndarray.flatten(hbm.randn_multivariate(rtld, np.matrix(sig), n=nvar))
 ##-----------------
 ## lmbd側の算出----
 # 多変量正規分布のパラメタの算出
 Hhat_lmbd = np.dot(np.dot(inverse(D2), D.T), Sita_lmbd)
 Dtld = np.dot(inverse(D2pA0), (np.dot(D2, Hhat_lmbd) + np.dot(A0, np.ndarray.flatten(m0))))
 # Dtldをベクトルにバラす
 Dtld_ary = np.array(Dtld)  # arrayじゃないと要素で操作できないのでarrayへ
 rtld = np.ndarray.flatten(Dtld_ary)
 sig = np.array([[D2pA0] * Vsita_lmbd[i] for i in range(Vsita_lmbd.shape[0])])
 # 多変量正規分布でサンプリング
コード例 #44
0
 Sita_dlt = tmp[:,0]
 rej_dlt += tmp[:,1]
 # step4--calculate_spending_habits_param_lambd=Sita_lmbd
 pool = Pool(processes=pr)
 tmp = np.array( pool.map(calculate_spending_habits_param_lambd, 
                          ((hh, u, Xs,  Sita_lmbd, Hlmbd, Vsita_lmbd, Ztld) for hh in xrange(nhh))) )
 pool.close()
 pool.join()            
 Sita_lmbd = tmp[:,0]
 rej_lmbd += tmp[:,1]
 ### step5--------------------------------------
 ## dlt側の算出----
 # 多変量正規分布のパラメタの算出
 D2 = np.dot(D.T, D)
 D2pA0 = D2 + A0
 Hhat_dlt = np.dot(np.dot(inverse(D2), D.T) , Sita_dlt)
 Dtld = np.dot( inverse(D2pA0) , (np.dot(D2, Hhat_dlt) + np.dot(A0, np.ndarray.flatten(m0))) )
 rtld = np.ndarray.flatten(Dtld)
 sig =  np.array( np.kron(Vsita_dlt, inverse(D2pA0)).T )
 # 多変量正規分布でサンプリング
 Hdlt = np.ndarray.flatten( hbm.randn_multivariate(rtld, np.matrix(sig), n=nvar) )
 ##-----------------
 ## lmbd側の算出----
 # 多変量正規分布のパラメタの算出
 Hhat_lmbd = np.dot( np.dot(inverse(D2), D.T) , Sita_lmbd)
 Dtld = np.dot( inverse(D2pA0) , (np.dot(D2, Hhat_lmbd) + np.dot(A0, np.ndarray.flatten(m0))) )
 rtld = np.ndarray.flatten(Dtld)
 sig =  np.array( np.kron(Vsita_lmbd, inverse(D2pA0)).T )
 # 多変量正規分布でサンプリング
 Hlmbd = np.ndarray.flatten( hbm.randn_multivariate(rtld, np.matrix(sig), n=nvar) ) 
 ##-----------------
コード例 #45
0
def RestreinedLeastSquaresFit(model0,
                              parameters0,
                              data0,
                              maxiter,
                              constrains0,
                              weightflag,
                              model_deriv=None,
                              deltachi=0.01,
                              fulloutput=0,
                              xdata=None,
                              ydata=None,
                              sigmadata=None):
    #get the codes:
    # 0 = Free       1 = Positive     2 = Quoted
    # 3 = Fixed      4 = Factor       5 = Delta
    # 6 = Sum        7 = ignored
    constrains = [[], [], []]
    for i in range(len(parameters0)):
        constrains[0].append(constrains0[0][i])
        constrains[1].append(constrains0[1][i])
        constrains[2].append(constrains0[2][i])
    for i in range(len(parameters0)):
        if type(constrains[0][i]) == type('string'):
            #get the number
            if constrains[0][i] == "FREE":
                constrains[0][i] = CFREE
            elif constrains[0][i] == "POSITIVE":
                constrains[0][i] = CPOSITIVE
            elif constrains[0][i] == "QUOTED":
                constrains[0][i] = CQUOTED
            elif constrains[0][i] == "FIXED":
                constrains[0][i] = CFIXED
            elif constrains[0][i] == "FACTOR":
                constrains[0][i] = CFACTOR
                constrains[1][i] = int(constrains[1][i])
            elif constrains[0][i] == "DELTA":
                constrains[0][i] = CDELTA
                constrains[1][i] = int(constrains[1][i])
            elif constrains[0][i] == "SUM":
                constrains[0][i] = CSUM
                constrains[1][i] = int(constrains[1][i])
            elif constrains[0][i] == "IGNORED":
                constrains[0][i] = CIGNORED
            elif constrains[0][i] == "IGNORE":
                constrains[0][i] = CIGNORED
            else:
                #I should raise an exception
                #constrains[0][i] = 0
                raise ValueError, "Unknown constraint %s" % constrains[0][i]
    # make a local copy of the function for an easy speed up ...
    model = model0
    parameters = array(parameters0)
    if ONED:
        data = array(data0)
        x = data[1:2, 0]
    fittedpar = parameters.__copy__()
    flambda = 0.001
    iter = maxiter
    niter = 0
    if ONED:
        selfx = data[:, 0]
        selfy = data[:, 1]
    else:
        if data0 is not None:
            selfx = array(map(lambda x: x[0], data0))
            selfy = array(map(lambda x: x[1], data0))
        else:
            selfx = xdata
            selfy = ydata
    selfweight = ones(selfy.shape, Float)
    if ONED:
        nr0, nc = data.shape
    else:
        nr0 = len(selfy)
        if data0 is not None:
            nc = len(data0[0])
        else:
            if sigmadata is None:
                nc = 2
            else:
                nc = 3

    if weightflag == 1:
        if nc == 3:
            #dummy = abs(data[0:nr0:inc,2])
            if ONED:
                dummy = abs(data[:, 2])
            else:
                if data0 is not None:
                    dummy = abs(array(map(lambda x: x[2], data0)))
                else:
                    dummy = abs(array(sigmadata))
            selfweight = 1.0 / (dummy + equal(dummy, 0))
            selfweight = selfweight * selfweight
        else:
            selfweight = 1.0 / (abs(selfy) + equal(abs(selfy), 0))
    n_param = len(parameters)
    selfalphazeros = zeros((n_param, n_param), Float)
    selfbetazeros = zeros((1, n_param), Float)
    index = arange(0, nr0, 1)
    while (iter > 0):
        niter = niter + 1
        if (niter < 2) and (n_param * 3 < nr0):
            x = take(selfx, index)
            y = take(selfy, index)
            weight = take(selfweight, index)
        else:
            x = selfx
            y = selfy
            weight = selfweight

        chisq0, alpha0, beta,\
        n_free, free_index, noigno, fitparam, derivfactor  =ChisqAlphaBeta(
                                                 model,fittedpar,
                                                 x,y,weight,constrains,model_deriv=model_deriv)
        print "B ", chisq0

        nr, nc = alpha0.shape
        flag = 0
        lastdeltachi = chisq0
        while flag == 0:
            newpar = parameters.__copy__()
            if (1):
                alpha = alpha0 + flambda * identity(nr) * alpha0
                deltapar = dot(beta, inverse(alpha))
            else:
                #an attempt to increase accuracy
                #(it was unsuccessful)
                alphadiag = sqrt(diagonal(alpha0))
                npar = len(sqrt(diagonal(alpha0)))
                narray = zeros((npar, npar), Float)
                for i in range(npar):
                    for j in range(npar):
                        narray[i,
                               j] = alpha0[i,
                                           j] / (alphadiag[i] * alphadiag[j])
                narray = inverse(narray + flambda * identity(nr))
                for i in range(npar):
                    for j in range(npar):
                        narray[i,
                               j] = narray[i,
                                           j] / (alphadiag[i] * alphadiag[j])
                deltapar = dot(beta, narray)
            pwork = zeros(deltapar.shape, Float)
            for i in range(n_free):
                if constrains[0][free_index[i]] == CFREE:
                    pwork[0][i] = fitparam[i] + deltapar[0][i]
                elif constrains[0][free_index[i]] == CPOSITIVE:
                    #abs method
                    pwork[0][i] = fitparam[i] + deltapar[0][i]
                    #square method
                    #pwork [0] [i] = (sqrt(fitparam [i]) + deltapar [0] [i]) * \
                    #                (sqrt(fitparam [i]) + deltapar [0] [i])
                elif constrains[0][free_index[i]] == CQUOTED:
                    pmax = max(constrains[1][free_index[i]],
                               constrains[2][free_index[i]])
                    pmin = min(constrains[1][free_index[i]],
                               constrains[2][free_index[i]])
                    A = 0.5 * (pmax + pmin)
                    B = 0.5 * (pmax - pmin)
                    if (B != 0):
                        pwork [0] [i] = A + \
                                    B * sin(arcsin((fitparam[i] - A)/B)+ \
                                    deltapar [0] [i])
                    else:
                        print "Error processing constrained fit"
                        print "Parameter limits are", pmin, ' and ', pmax
                        print "A = ", A, "B = ", B
                newpar[free_index[i]] = pwork[0][i]
            newpar = array(getparameters(newpar, constrains))
            workpar = take(newpar, noigno)
            #yfit = model(workpar.tolist(), x)
            yfit = model(workpar, x)
            chisq = sum(weight * (y - yfit) * (y - yfit))
            print "chisq ", chisq, "chisq0 ", chisq0
            if chisq > chisq0:
                flambda = flambda * 10.0
                if flambda > 1000:
                    flag = 1
                    iter = 0
            else:
                flag = 1
                fittedpar = newpar.__copy__()
                lastdeltachi = (chisq0 - chisq) / (chisq0 + (chisq0 == 0))
                if (lastdeltachi) < deltachi:
                    pass
                    # iter = 0
                chisq0 = chisq
                flambda = flambda / 10.0
                print "iter = ", iter, "chisq = ", chisq
            iter = iter - 1
    sigma0 = sqrt(abs(diagonal(inverse(alpha0))))
    sigmapar = getsigmaparameters(fittedpar, sigma0, constrains)
    if not fulloutput:
        return fittedpar.tolist(), chisq / (len(yfit) -
                                            len(sigma0)), sigmapar.tolist()
    else:
        return fittedpar.tolist(), chisq / (
            len(yfit) - len(sigma0)), sigmapar.tolist(), niter, lastdeltachi