コード例 #1
0
 def _logticks(self, lower, upper):
     #lower,upper = map(_Numeric.log10,[lower,upper])
     #print 'logticks',lower,upper
     ticks = []
     mag = _Numeric.power(10,_Numeric.floor(lower))
     if upper-lower > 6:
         t = _Numeric.power(10,_Numeric.ceil(lower))
         base = _Numeric.power(10,_Numeric.floor((upper-lower)/6))
         def inc(t):
             return t*base-t
     else:
         t = _Numeric.ceil(_Numeric.power(10,lower)/mag)*mag
         def inc(t):
             return 10**int(_Numeric.floor(_Numeric.log10(t)+1e-16))
     majortick = int(_Numeric.log10(mag))
     while t <= pow(10,upper):
         if majortick != int(_Numeric.floor(_Numeric.log10(t)+1e-16)):
             majortick = int(_Numeric.floor(_Numeric.log10(t)+1e-16))
             ticklabel = '1e%d'%majortick
         else:
             if upper-lower < 2:
                 minortick = int(t/pow(10,majortick)+.5)
                 ticklabel = '%de%d'%(minortick,majortick)
             else:
                 ticklabel = ''
         ticks.append((_Numeric.log10(t), ticklabel))
         t += inc(t)
     if len(ticks) == 0:
         ticks = [(0,'')]
     return ticks
コード例 #2
0
ファイル: fft_mouth.py プロジェクト: Akirato/speak
    def processBuffer(self, bounds):
        self.param1 = bounds.height/65536.0
        self.param2 = bounds.height/2.0

        if(self.stop==False):

            Fs = 48000
            nfft= 65536
            self.newest_buffer=self.newest_buffer[0:256]
            self.fftx = fft(self.newest_buffer, 256,-1)

            self.fftx=self.fftx[0:self.freq_range*2]
            self.draw_interval=bounds.width/(self.freq_range*2.)

            NumUniquePts = ceil((nfft+1)/2)
            self.buffers=abs(self.fftx)*0.02
            self.y_mag_bias_multiplier=0.1
            self.scaleX = "hz"
            self.scaleY = ""

        if(len(self.buffers)==0):
            return False

        # Scaling the values
        val = []
        for i in self.buffers:
            temp_val_float = float(self.param1*i*self.y_mag) + self.y_mag_bias_multiplier * self.param2

            if(temp_val_float >= bounds.height):
                temp_val_float = bounds.height-25
            if(temp_val_float <= 0):
                temp_val_float = 25
            val.append( temp_val_float )

        self.peaks = val
コード例 #3
0
    def __init__(self, shp, ptlist, origin, selSense, **opts):
        """
        ptlist is a list of 3d points describing a selection.
        origin is the center of view, and normal gives the direction
        of the line of light. Form a structure for telling whether
        arbitrary points fall inside the curve from the point of view.
        """
        # bruce 041214 rewrote some of this method
        simple_shape_2d.__init__( self, shp, ptlist, origin, selSense, opts)
        
        # bounding rectangle, in integers (scaled 8 to the angstrom)
        ibbhi = array(map(int, ceil(8 * self.bboxhi)+2))
        ibblo = array(map(int, floor(8 * self.bboxlo)-2))
        bboxlo = self.bboxlo
        
        # draw the curve in these matrices and fill it
        # [bruce 041214 adds this comment: this might be correct but it's very
        # inefficient -- we should do it geometrically someday. #e]
        mat = zeros(ibbhi - ibblo)
        mat1 = zeros(ibbhi - ibblo)
        mat1[0,:] = 1
        mat1[-1,:] = 1
        mat1[:,0] = 1
        mat1[:,-1] = 1
        pt2d = self.pt2d
        pt0 = pt2d[0]
        for pt in pt2d[1:]:
            l = ceil(vlen(pt - pt0)*8)
            if l<0.01: continue
            v=(pt - pt0)/l
            for i in range(1 + int(l)):
                ij = 2 + array(map(int, floor((pt0 + v * i - bboxlo)*8)))
                mat[ij]=1
            pt0 = pt
        mat1 += mat
        
        fill(mat1, array([1, 1]),1)
        mat1 -= mat #Which means boundary line is counted as inside the shape.
        # boolean raster of filled-in shape
        self.matrix = mat1  ## For any element inside the matrix, if it is 0, then it's inside.
        # where matrix[0, 0] is in x, y space
        self.matbase = ibblo

        # axes of the plane; only used for debugging
        self.x = self.right
        self.y = self.up
        self.z = self.normal
コード例 #4
0
ファイル: numpyExtn.py プロジェクト: www3838438/orange-bio
def lowess2(x, y, xest, f=2./3., iter=3):
    """Returns estimated values of y in data points xest (or None if estimation fails).
    Lowess smoother: Robust locally weighted regression.
    The lowess function fits a nonparametric regression curve to a scatterplot.
    The arrays x and y contain an equal number of elements; each pair
    (x[i], y[i]) defines a data point in the scatterplot. The function returns
    the estimated (smooth) values of y.

    The smoothing span is given by f. A larger value for f will result in a
    smoother curve. The number of robustifying iterations is given by iter. The
    function will run faster with a smaller number of iterations."""
    x = Numeric.asarray(x, 'd')
    y = Numeric.asarray(y, 'd')
    xest = Numeric.asarray(xest, 'd')
    n = len(x)
    nest = len(xest)
    r = min(int(Numeric.ceil(f*n)),n-1) # radius: num. of points to take into LR
    h = [Numeric.sort(abs(x-x[i]))[r] for i in range(n)]    # distance of the r-th point from x[i]
    w = Numeric.clip(abs(([x]-Numeric.transpose([x]))/h),0.0,1.0)
    w = 1-w*w*w
    w = w*w*w
    hest = [Numeric.sort(abs(x-xest[i]))[r] for i in range(nest)]    # r-th min. distance from xest[i] to x
    west = Numeric.clip(abs(([xest]-Numeric.transpose([x]))/hest),0.0,1.0)  # shape: (len(x), len(xest)
    west = 1-west*west*west
    west = west*west*west
    yest = Numeric.zeros(n,'d')
    yest2 = Numeric.zeros(nest,'d')
    delta = Numeric.ones(n,'d')
    try:
        for iteration in range(iter):
            # fit xest
            for i in range(nest):
                weights = delta * west[:,i]
                b = Numeric.array([sum(weights*y), sum(weights*y*x)])
                A = Numeric.array([[sum(weights), sum(weights*x)], [sum(weights*x), sum(weights*x*x)]])
                beta = LinearAlgebra.solve_linear_equations(A,b)
                yest2[i] = beta[0] + beta[1]*xest[i]
            # fit x (to calculate residuals and delta)
            for i in range(n):
                weights = delta * w[:,i]
                b = Numeric.array([sum(weights*y), sum(weights*y*x)])
                A = Numeric.array([[sum(weights), sum(weights*x)], [sum(weights*x), sum(weights*x*x)]])
                beta = LinearAlgebra.solve_linear_equations(A,b)
                yest[i] = beta[0] + beta[1]*x[i]
            residuals = y-yest
            s = MLab.median(abs(residuals))
            delta = Numeric.clip(residuals/(6*s),-1,1)
            delta = 1-delta*delta
            delta = delta*delta
    except LinearAlgebra.LinAlgError:
        print "Warning: NumExtn.lowess2: LinearAlgebra.solve_linear_equations: Singular matrix"
        yest2 = None
    return yest2
コード例 #5
0
    def processBuffer(self, bounds):
        self.param1 = bounds.height / 65536.0
        self.param2 = bounds.height / 2.0

        if (self.stop == False):

            Fs = 48000
            nfft = 65536
            self.newest_buffer = self.newest_buffer[0:256]
            self.fftx = fft(self.newest_buffer, 256, -1)

            self.fftx = self.fftx[0:self.freq_range * 2]
            self.draw_interval = bounds.width / (self.freq_range * 2.)

            NumUniquePts = ceil((nfft + 1) / 2)
            self.buffers = abs(self.fftx) * 0.02
            self.y_mag_bias_multiplier = 0.1
            self.scaleX = "hz"
            self.scaleY = ""

        if (len(self.buffers) == 0):
            return False

        # Scaling the values
        val = []
        for i in self.buffers:
            temp_val_float = float(
                self.param1 * i *
                self.y_mag) + self.y_mag_bias_multiplier * self.param2

            if (temp_val_float >= bounds.height):
                temp_val_float = bounds.height - 25
            if (temp_val_float <= 0):
                temp_val_float = 25
            val.append(temp_val_float)

        self.peaks = val
コード例 #6
0
ファイル: numpyExtn.py プロジェクト: www3838438/orange-bio
def lowessW(x, y, xest, f=2./3., iter=3, dWeights=None, callback=None):
    """Returns estimated values of y in data points xest (or None if estimation fails).
    Lowess smoother: Robust locally weighted regression.
    The lowess function fits a nonparametric regression curve to a scatterplot.
    The arrays x and y contain an equal number of elements; each pair
    (x[i], y[i]) defines a data point in the scatterplot. The function returns
    the estimated (smooth) values of y.

    The smoothing span is given by f. A larger value for f will result in a
    smoother curve. The number of robustifying iterations is given by iter. The
    function will run faster with a smaller number of iterations.

    Data points may be assigned weights; if None, all weights equal 1.
    """
    x = Numeric.asarray(x, 'd')
    y = Numeric.asarray(y, 'd')
    xest = Numeric.asarray(xest, 'd')
    n = len(x)
    if n <> len(y):
        raise AttributeError, "Error: lowessW(x,y,xest,f,iter,dWeights): len(x)=%i not equal to len(y)=%i" % (len(x), len(y))
    nest = len(xest)
    # weights of data points (optional)
    if dWeights <> None:
        dWeights = Numeric.asarray(dWeights, 'd')
        if len(dWeights) <> n:
            raise AttributeError, "Error: lowessW(x,y,xest,f,iter,dWeights): len(dWeights)=%i not equal to len(x)=%i" % (len(dWeights), len(x))
##        dWeights = dWeights.reshape((n,1))
    else:
##        dWeights = Numeric.ones((n,1))
        dWeights = Numeric.ones((n,))
    r = min(int(Numeric.ceil(f*n)),n-1) # radius: num. of points to take into LR
    h = [Numeric.sort(abs(x-x[i]))[r] for i in range(n)]    # distance of the r-th point from x[i]
    w = Numeric.clip(abs(([x]-Numeric.transpose([x]))/h),0.0,1.0)
    w = 1-w*w*w
    w = w*w*w
    hest = [Numeric.sort(abs(x-xest[i]))[r] for i in range(nest)]    # r-th min. distance from xest[i] to x
    west = Numeric.clip(abs(([xest]-Numeric.transpose([x]))/hest),0.0,1.0)  # shape: (len(x), len(xest))
    west = 1-west*west*west
    west = west*west*west
    yest = Numeric.zeros(n,'d')
    yest2 = Numeric.zeros(nest,'d')
    delta = Numeric.ones(n,'d')
    try:
        for iteration in range(int(iter)):
            # fit xest
            for i in range(nest):
##                print delta.shape, west[:,i].shape, dWeights.shape
                weights = delta * west[:,i] * dWeights
                b = Numeric.array([sum(weights*y), sum(weights*y*x)])
                A = Numeric.array([[sum(weights), sum(weights*x)], [sum(weights*x), sum(weights*x*x)]])
                beta = LinearAlgebra.solve_linear_equations(A,b)
                yest2[i] = beta[0] + beta[1]*xest[i]
            # fit x (to calculate residuals and delta)
            for i in range(n):
                weights = delta * w[:,i] * dWeights
                b = Numeric.array([sum(weights*y), sum(weights*y*x)])
                A = Numeric.array([[sum(weights), sum(weights*x)], [sum(weights*x), sum(weights*x*x)]])
                beta = LinearAlgebra.solve_linear_equations(A,b)
                yest[i] = beta[0] + beta[1]*x[i]
            residuals = y-yest
            s = MLab.median(abs(residuals))
            delta = Numeric.clip(residuals/(6*s),-1,1)
            delta = 1-delta*delta
            delta = delta*delta
            if callback: callback()
    except LinearAlgebra.LinAlgError:
        print "Warning: NumExtn.lowessW: LinearAlgebra.solve_linear_equations: Singular matrix"
        yest2 = None
    return yest2