def test_get_output_for_cropped(self, crop_layer): from numpy.testing import assert_array_almost_equal as aeq x0 = numpy.random.random((5, 3)) x1 = numpy.random.random((4, 2)) inputs = [theano.shared(x0), theano.shared(x1)] result = crop_layer.get_output_for(inputs).eval() desired_result = 2 * x0[:4, :2] - x1[:4, :2] aeq(result, desired_result)
def test_get_output_for_cropped(self, crop_layer): from numpy.testing import assert_array_almost_equal as aeq x0 = numpy.random.random((5, 3)) x1 = numpy.random.random((4, 2)) inputs = [theano.shared(x0), theano.shared(x1)] result = crop_layer.get_output_for(inputs).eval() desired_result = 2*x0[:4, :2] - x1[:4, :2] aeq(result, desired_result)
def test_slice_layer(): from lasagne.layers import SliceLayer, InputLayer, get_output_shape,\ get_output from numpy.testing import assert_array_almost_equal as aeq in_shp = (3, 5, 2) l_inp = InputLayer(in_shp) l_slice_ax0 = SliceLayer(l_inp, axis=0, indices=0) l_slice_ax1 = SliceLayer(l_inp, axis=1, indices=slice(3, 5)) l_slice_ax2 = SliceLayer(l_inp, axis=-1, indices=-1) x = np.arange(np.prod(in_shp)).reshape(in_shp).astype('float32') x1 = x[0] x2 = x[:, 3:5] x3 = x[:, :, -1] assert get_output_shape(l_slice_ax0) == x1.shape assert get_output_shape(l_slice_ax1) == x2.shape assert get_output_shape(l_slice_ax2) == x3.shape aeq(get_output(l_slice_ax0, x).eval(), x1) aeq(get_output(l_slice_ax1, x).eval(), x2) aeq(get_output(l_slice_ax2, x).eval(), x3) # test slicing None dimension in_shp = (2, None, 2) l_inp = InputLayer(in_shp) l_slice_ax1 = SliceLayer(l_inp, axis=1, indices=slice(3, 5)) assert get_output_shape(l_slice_ax1) == (2, None, 2) aeq(get_output(l_slice_ax1, x).eval(), x2)
def test_mapping_to_physical(self): "Test mapping to the physical parameterization." map = generate_mapping('kipping', 'physical') aeq(map(self.p_k).pv, self.p_p.pv)
def test_mapping_to_orbit(self): "Test mapping to the orbit parameterization." aeq(self.p_k.map_to_orbit().pv, self.p_o.pv)
def test_mapping_to_kipping(self): "Test mapping the physical parameterization to the Kipping parameterization." map = generate_mapping('physical', 'kipping') aeq(map(self.p_p).pv, self.p_k.pv)
def test_mapping_to_orbit(self): "Map the orbit parameterization to itself" p_o = TransitParameterization('orbit', p_orbit) aeq(p_o.map_to_orbit().pv, p_o.pv)
def test_minimization(self): de = DiffEvol(lambda P:np.sum((P-1)**2), [[-2, 2], [-2, 2], [-2, 2]], 40, 100) aeq(de()[1], np.ones(3), 7, 'DiffEvol fitter fails to find the minimum.')