コード例 #1
0
ファイル: dynamical_model.py プロジェクト: JakaKokosar/scvelo
    def uniform_weighting(self, n_regions=5, perc=95):
        from numpy import union1d as union
        from numpy import intersect1d as intersect
        u, s = self.u, self.s
        u_b = np.linspace(0, np.percentile(u, perc), n_regions)
        s_b = np.linspace(0, np.percentile(s, perc), n_regions)

        regions, weights = {}, np.ones(len(u))
        for i in range(n_regions):
            if i == 0:
                region = intersect(np.where(u < u_b[i + 1]),
                                   np.where(s < s_b[i + 1]))
            elif i < n_regions - 1:
                lower_cut = union(np.where(u > u_b[i]), np.where(s > s_b[i]))
                upper_cut = intersect(np.where(u < u_b[i + 1]),
                                      np.where(s < s_b[i + 1]))
                region = intersect(lower_cut, upper_cut)
            else:
                region = union(
                    np.where(u > u_b[i]),
                    np.where(s > s_b[i]))  # lower_cut for last region
            regions[i] = region
            if len(region) > 0:
                weights[region] = n_regions / len(region)
        # set weights accordingly such that each region has an equal overall contribution.
        self.weights = weights * len(u) / np.sum(weights)
        self.u_b, self.s_b = u_b, s_b
コード例 #2
0
    def metrics_inversion_violations(
        self,
        ref_point,
        volume_max,
        num_fronts,
        num_exec,
        name_var,
        violations,
    ):
        """Extract the metrics only from the pareto front, inverts the inversion made to convert form maximization to minimization, organizes metrics and data for visualization.

        Returns:
            list: Array with metrics:
                "Hypervolume"
                Solution X "X Total throughput [kg]", "X Max total backlog [kg]", "X Mean total backlog [kg]", "X Median total backlog [kg]","X Min total backlog [kg]", "X P(total backlog ≤ 0 kg)","X Max total inventory deficit [kg]", "X Mean total inventory deficit [kg]", "X Median total inventory deficit [kg]", "X Min total inventory deficit [kg]"
                Solution Y "Y Total throughput [kg]", "Y Max total backlog [kg]", "Y Mean total backlog [kg]", "Y Median total backlog [kg]","Y Min total backlog [kg]", "Y P(total backlog ≤ 0 kg)","Y Max total inventory deficit [kg]", "Y Mean total inventory deficit [kg]", "Y Median total inventory deficit [kg]", "Y Min total inventory deficit [kg]" Pareto Front
        """
        # Indexes
        try:
            ix_vio = np.where(violations == 0)[0]
            ix_par = np.where(self.fronts == 0)[0]
            ix_pareto = np.intersect(ix_vio, ix_par)
        except:
            ix_pareto = np.where(self.fronts == 0)[0]

        # Calculates hypervolume
        try:
            hv = hypervolume(points=self.objectives_raw[ix_pareto])
            hv_vol_norma = hv.compute(ref_point) / volume_max
        except Exception as e:
            print(e, "setting hv_vol_norma = 0")
            hv_vol_norma = 0
        # except ValueError:
        #     hv_vol_norma = 0
        metrics_exec = [num_exec, name_var, hv_vol_norma]

        # Reinverts again the throughput, that was modified for minimization
        self.objectives_raw[:, 0] = self.objectives_raw[:, 0] * (-1.0)
        # Metrics
        ix_best_min = np.argmin(self.objectives_raw[:, 0][ix_pareto])
        ix_best_max = np.argmax(self.objectives_raw[:, 0][ix_pareto])

        metrics_id = [
            self.extract_metrics(ix_best_min, num_fronts, num_exec, "X",
                                 name_var, ix_pareto)
        ]
        metrics_id.append(
            self.extract_metrics(ix_best_max, num_fronts, num_exec, "Y",
                                 name_var, ix_pareto))

        # Plot Data
        metrics_exec.append(self.objectives_raw[ix_pareto])
        return metrics_exec, metrics_id
コード例 #3
0
ファイル: bondtype.py プロジェクト: ajkerr0/kappa
def apply_rules123(vstate, cons, bonds, bos):
    """ """
    
    # Rule 1: For each atom in a bond, if the bond order bo is determined,
    #   con is deducted by 1 and av is deducted by bo
    #######
    # Since no bond orders are known at the start we don't start looping through
    #   bonds
    
    # Rule 2: For one atom, if its con equals to av, the bond orders 
    # of its unassigned bonds are set to 1
    
    # Rule 3: For one atom, if its con equals to 1, the bond order 
    # of the last bond is set to av
    
    while True:
        
        # apply rule 2
        # where unassigned bonds (bo == 0) of atoms of con == av are set to single valence
        where_con_is_av = np.where(np.intersect1d(vstate == cons, vstate != 0))
        bos[np.intersect(find_bonds(where_con_is_av), bos==0)] = 1
        
        # apply rule 3
        # where unassigned bonds (bo == 0) of atoms of con == 1 are set to av
        where_con_is_one = np.where(cons == 1)
        bonds_where_con1 = find_bonds(where_con_is_one)
        bos[bonds_where_con1] = vstate[bonds_where_con1]
        
        # apply rule 1
        # where bo is determined (!= 0), substract av by bo
        # then subtract con by 1 at this atoms
        where_bo_known = np.where(bos != 0)[0]
        sub_bos_by_av, sub_con_by_1 = find_atoms(vstate.shape[0], 
                                                 bonds[where_bo_known], 
                                                 bos[where_bo_known])
        vstate -= sub_bos_by_av
        cons -= sub_con_by_1
コード例 #4
0
ファイル: bondtype.py プロジェクト: pauliwu/kappa
def apply_rules123(vstate, cons, bonds, bos):
    """ """

    # Rule 1: For each atom in a bond, if the bond order bo is determined,
    #   con is deducted by 1 and av is deducted by bo
    #######
    # Since no bond orders are known at the start we don't start looping through
    #   bonds

    # Rule 2: For one atom, if its con equals to av, the bond orders
    # of its unassigned bonds are set to 1

    # Rule 3: For one atom, if its con equals to 1, the bond order
    # of the last bond is set to av

    while True:

        # apply rule 2
        # where unassigned bonds (bo == 0) of atoms of con == av are set to single valence
        where_con_is_av = np.where(np.intersect1d(vstate == cons, vstate != 0))
        bos[np.intersect(find_bonds(where_con_is_av), bos == 0)] = 1

        # apply rule 3
        # where unassigned bonds (bo == 0) of atoms of con == 1 are set to av
        where_con_is_one = np.where(cons == 1)
        bonds_where_con1 = find_bonds(where_con_is_one)
        bos[bonds_where_con1] = vstate[bonds_where_con1]

        # apply rule 1
        # where bo is determined (!= 0), substract av by bo
        # then subtract con by 1 at this atoms
        where_bo_known = np.where(bos != 0)[0]
        sub_bos_by_av, sub_con_by_1 = find_atoms(vstate.shape[0],
                                                 bonds[where_bo_known],
                                                 bos[where_bo_known])
        vstate -= sub_bos_by_av
        cons -= sub_con_by_1
コード例 #5
0
        def solve(self, time_points, tor_min, tor_max):

            # Check that the model has first been calibrated.
            #if ~isfield(self.variables, 'meanHead_calib') || ~isfield(self.parameters,'Const')
            if ~isfield(self.variables, 'meanHead_calib'):
                print 'The model does not appear to have first been calibrated. Please calibrate the model before running a simulation.'
            
            # Check the time points are all unique
            if length(unique(time_points))!=len(time_points):
                print 'The time points for simulation must be unique.'
            
            # Create logical matrix indicating if the time point is an
            # observation. If true, then the data point is used to update
            # the exponential smoothing.  Else, a forecast is made using
            # the exonential smoothing using the smooth terms from the 
            # previous observation. 
            # To calculate this vector, the following steps are undertaken:
            # 1. Unique time points are derived from the simulation time
            # points and the observed time points within the calibration
            # period.
            # 2. Find the time points within the unique list that are
            # observations.
            # 3. Create a logical vector with the time points from 2 as true
            # 4. Assign vector from 3 to the selfect for access within the
            # objective def.
            time_points_all = time_points self.variables.calibration_time_points
            time_points_all = np.unique(np.sort(time_points_all))
            dummy, ind = np.intersect(time_points_all, self.variables.calibration_time_points)
            self.variables.isObsTimePoints = False(np.shape(time_points_all))
            self.variables.isObsTimePoints[ind] = True                                    
            
            # Create vector of the time steps for only the time points with
            # observed heads.
            self.variables.delta_t = np.diff(time_points_all(self.variables.isObsTimePoints)) ./ 365.
            self.variables.meanDelta_t = np.mean(self.variables.delta_t)
            
            # Convert logical to double for MEX input
            self.variables.isObsTimePoints = np.double(self.variables.isObsTimePoints)
            
            # Set percentile for noise 
            Pnoise = 0.95            
            
            # Calc deterministic component of the head at 'time_points_all'.
            params = getParameters(self)
            self.variables.doingCalibration = False
            dummy, headtmp, self.variables.h_forecast = objectivedef(self, params, time_points_all)            
            
            # Filter 'head' to only those time points input to the def.
            dummy, ind = np.intersect(time_points_all, time_points)            
            headtmp = [time_points, headtmp[ind,:]]            
                        
            if np.shape(params)[2]>1:
                head  = np.zeros([np.shape(headtmp)[1], np.shape(headtmp)[2], np.shape(params)[2]])
                noise = np.zeros([np.shape(headtmp)[1], 3, np.shape(params)[2]])
                head[:,:,1] = headtmp
                for ii in range(np.shape(params)[2]):
                    
                    # Calc deterministic component of the head at 'time_points_all'.
                    params = getParameters(self)
                    self.variables.doingCalibration = False
                    dummy, headtmp, self.variables.h_forecast = objectivedef(self, params[:,ii], time_points_all)            

                    # Filter 'head' to only those time points input to the
                    # def.
                    dummy, ind = np.intersect(time_points_all, time_points)            
                    head[:,:,ii] = [time_points, head[ind,:]]                                
                
                    # Create noise component output.
                    if isfield(self.variables, 'sigma_n'):
                        noise[:,:,ii] = [head[:,1,ii],  np.ones([np.shape(head)[1], 2]) .* np.norminv(Pnoise, 0, 1) .* self.variables.sigma_n[ii]]
                    else:
                        noise[:,:,ii] = [head[:,1,ii], np.zeros([np.shape(head)[1], 2])]
            else:
                head = headtmp                
                
                # Create noise component output.
                if isfield(self.variables, 'sigma_n'):
                    noise[:,:] = [head[:,1], np.norminv(Pnoise, 0, 1) .* self.variables.sigma_n(np.ones([np.shape(head)[1], 2)])]
                else:
                    noise[:,:] = [head[:,1], np.zeros([np.shape(head)[1], 2])]
                        
            # Assign column names
            colnames = ['time', 'h_star']
            
            return head, colnames, noise