コード例 #1
0
def part2(busses):
    step = 1
    time = 0
    for offset, bus in busses:
        while ((time + offset) % bus != 0):
            time += step
        step = np.lcm(bus, step)
    return (time)
コード例 #2
0
	def compute(M,N):
		m,n,p,q = len(M), len(M[0]), len(N), len(N[0])
		s = np.lcm(n,p)
		i1,i2 = s//n,s//p
		I1 = np.identity(i1)
		I2 = np.identity(i2)
		MI = np.kron(M,I1)
		NI = np.kron(N,I2)
		return np.matmul(MI,NI)
コード例 #3
0
def createCsv(sampleRate, filename, wave):
    rpts = int(np.lcm(len(wave), 128)/len(wave))
    f = open (filename, 'w')
    f.write("SampleRate={}\n".format(int(sampleRate)))
    f.write("SetConfig=true\n")
    f.write("Y1\n")
    for sample in np.tile(wave, rpts):
        f.write("{}\n".format(sample))
    f.close()
コード例 #4
0
ファイル: day13.py プロジェクト: cliffbird/adventofcode
    def run2(self):
        first_bus_id = None
        bus_ids_dict = {}
        diff_from_first_bus = 0
        with open(self.path, "r") as f:
            line_number = 0
            for line in f:
                line = line.strip()
                if line_number == 0:
                    my_timestamp = int(line)
                elif line_number == 1:
                    for id in line.split(","):
                        if id != "x":
                            if first_bus_id is None:
                                first_bus_id = int(id)
                            bus_ids_dict[int(id)] = diff_from_first_bus
                        diff_from_first_bus += 1
                else:
                    raise Exception(f"Invalid line number {line_number}")
                line_number += 1

        largest_bus_id = max(bus_ids_dict.keys())
        largest_diff_from_first_bus = bus_ids_dict[largest_bus_id]

        bus_ids_sorted = list(bus_ids_dict.keys())
        bus_ids_sorted.sort(reverse=True)
        bus_ids_sorted.remove(largest_bus_id)
        time_differences_sorted = []
        for bus_id in bus_ids_sorted:
            time_differences_sorted.append(bus_ids_dict[bus_id])

        starting_timestamp = int(my_timestamp / largest_bus_id) * largest_bus_id

        largest_factor = bus_ids_sorted[0]
        largest_factor_start = self.get_first_match(starting_timestamp, largest_bus_id, largest_factor,
                                                    time_differences_sorted[0] - largest_diff_from_first_bus)
        bus_ids_sorted.remove(bus_ids_sorted[0])
        time_differences_sorted.remove(time_differences_sorted[0])

        timestamp = largest_factor_start
        while bus_ids_sorted:
            firsts_timestamp = timestamp - largest_diff_from_first_bus
            while bus_ids_sorted:
                bus_id = bus_ids_sorted[0]
                time_difference = time_differences_sorted[0]
                if (firsts_timestamp + time_difference) % bus_id != 0:
                    break
                else:
                    largest_factor = np.lcm(largest_factor, bus_id, dtype='int64')
                    bus_ids_sorted.remove(bus_ids_sorted[0])
                    time_differences_sorted.remove(time_differences_sorted[0])

                    if not bus_ids_sorted:
                        print(f"part2: {timestamp - largest_diff_from_first_bus}")
                        break

            timestamp += largest_bus_id*largest_factor
コード例 #5
0
ファイル: test_lcm.py プロジェクト: wuhuachaocoding/Paddle
    def test_dygraph(self):
        paddle.disable_static()
        x1 = paddle.to_tensor(self.x_np)
        x2 = paddle.to_tensor(self.y_np)
        result = paddle.lcm(x1, x2)
        self.assertEqual(
            np.allclose(np.lcm(self.x_np, self.y_np), result.numpy()), True)

        paddle.enable_static()
コード例 #6
0
def ajax():
    form = InputForm()
    if form.validate_on_submit():
        x = form.x.data
        y = form.y.data
        result = str(np.lcm(x, y))  # calculate & parse to string for jsonify

        return jsonify(result=result)
    return jsonify(result=form.errors)
コード例 #7
0
def createMat(sampleRate, filename, wave):
    rpts = int(np.lcm(len(wave), 128)/len(wave))
    XDelta = 1 / sampleRate
    
    matparams = {'InputZoom':[[1]], 
                 'XDelta':XDelta, 
                 'XStart':[[0]], 
                 'Y': np.tile(wave, rpts)}
    sio.savemat(filename, matparams)
コード例 #8
0
def diff_resize_area(tensor, new_height_width):
    """Performs a resize op that passes gradients evenly.

  The tensor goes through a resize and pool where the resize and pool
  operations are determined by the Least Common Multiplier. Since resize with
  nearest_neighbors and avg_pool distributes the gradients from the
  output to input evenly, there's less of a chance of learning artifacts. First
  we resize to the LCM then avg_pool to new_height_width. This resize operation
  is only efficient in cases where LCM is small. This is typically the case when
  upsampling or downsampling by a factor of 2 (e.g H = 0.5 * new_H).

  Args:
    tensor: a tensor of shape [B, H, W, D]
    new_height_width: A tuple of length two which specifies new height, width
      respectively.

  Returns:
    The resize area tensor [B, H_new, W_new, D].

  Raises:
    RuntimeError: If the LCM is larger than 10 x new_height_width, then
      raise an error to prevent inefficient memory usage.
  """
    new_h, new_w = new_height_width
    unused_b, curr_h, curr_w, unused_d = tensor.shape.as_list()
    # The least common multiplier used to determine the intermediate resize
    # operation.
    l_h = np.lcm(curr_h, new_h)
    l_w = np.lcm(curr_w, new_w)
    if l_h == curr_h and l_w == curr_w:
        im = tensor
    elif (l_h < (10 * new_h) and l_w < (10 * new_w)):
        im = tf.compat.v1.image.resize_bilinear(tensor, [l_h, l_w],
                                                half_pixel_centers=True)
    else:
        raise RuntimeError("DifferentiableResizeArea is memory inefficient"
                           "for resizing from (%d, %d) -> (%d, %d)" %
                           (curr_h, curr_w, new_h, new_w))
    lh_factor = l_h // new_h
    lw_factor = l_w // new_w
    if lh_factor == lw_factor == 1:
        return im
    return tf.nn.avg_pool2d(im, [lh_factor, lw_factor], [lh_factor, lw_factor],
                            padding="VALID")
コード例 #9
0
ファイル: main.py プロジェクト: pedrokiefer/adventofcode2019
def simulate_moons_2(moons):
    i = 0
    initial_state = [state(moons, x) for x in range(3)]
    cycle_len = [0, 0, 0]
    while (cycle_len[0] == 0 or cycle_len[1] == 0 or cycle_len[2] == 0):
        step(moons)
        i += 1

        if i % 100 == 0:
            print(i, cycle_len)

        for d in range(3):
            if cycle_len[d] == 0 and state(moons, d) == initial_state[d]:
                cycle_len[d] = i
                print(cycle_len)

    print(cycle_len)
    result = np.lcm(cycle_len[0], np.lcm(cycle_len[1], cycle_len[2]))
    return result
コード例 #10
0
def calculate_greatest_common_denominator(denominators):
    GCD = 0
    if len(denominators) == 1:
        return denominators
    else:
        for i in range(len(denominators) - 1):
            cur_GCD = np.lcm(denominators[i], denominators[i + 1])
            if cur_GCD > GCD:
                GCD = cur_GCD
    return GCD
コード例 #11
0
ファイル: NumpyUFuncsBasic.py プロジェクト: AlexHu0208/Demo
def np_LCM():
    x = 4
    y = 6
    print(np.lcm(x, y))
    arr = np.array([3, 6, 9])
    x = np.lcm.reduce(arr)
    print(x)
    arr = np.arange(1, 10)
    x = np.lcm.reduce(arr)
    print(x)
コード例 #12
0
ファイル: fft.py プロジェクト: makasprzak/aoc
def calculate_digit(sum_cache, i, int_signal, times=1):
    window_length = ((i + 1) * 4)
    reminder = len(int_signal) % window_length
    if reminder == 0:
        fft = signle_cycle_fft(sum_cache, i, int_signal, window_length)
        return (fft * times) % 10
    else:
        cycle = np.lcm(reminder, window_length) / reminder
        remaining_times = times % cycle
        effective_signal = int_signal * int(remaining_times)
        return signle_cycle_fft(sum_cache, i, effective_signal, window_length)
コード例 #13
0
 def cancel(arr, i, j, k):
     a = arr[j][i]
     b = arr[j][k]
     if b != 0:
         try:
             lcm = int(numpy.lcm(a, b))
         except:
             return []
         for t in range(len(arr)):
             arr[t].row[k] = arr[t][k] * (lcm //
                                          b) - arr[t][i] * (lcm // a)
コード例 #14
0
 def adjust_block_compatibility(self, ws, bs, gs):
     """Adjusts the compatibility of widths, bottlenecks, and groups."""
     assert len(ws) == len(bs) == len(gs)
     assert all(w > 0 and b > 0 and g > 0 for w, b, g in zip(ws, bs, gs))
     vs = [int(max(1, w * b)) for w, b in zip(ws, bs)]
     gs = [int(min(g, v)) for g, v in zip(gs, vs)]
     ms = [np.lcm(g, b) if b > 1 else g for g, b in zip(gs, bs)]
     vs = [max(m, int(round(v / m) * m)) for v, m in zip(vs, ms)]
     ws = [int(v / b) for v, b in zip(vs, bs)]
     assert all(w * b % g == 0 for w, b, g in zip(ws, bs, gs))
     return ws, bs, gs
コード例 #15
0
def combine(buses: List[Tuple[int, int]]) -> Tuple[int, int]:
    *buses_to_combine, (bus_time_period, wait_time) = buses

    if not buses_to_combine:
        return 0, bus_time_period

    curr_time, time_period = combine(buses_to_combine)
    while True:
        if get_wait_time(curr_time, bus_time_period) == wait_time:
            return curr_time, numpy.lcm(time_period, bus_time_period)
        curr_time += time_period
コード例 #16
0
def solve(data=None):
    """
    Simulate the motion of the moons in time steps.
    Within each time step, first update the velocity of every moon by applying gravity.
    Then, once all moons' velocities have been updated,
    update the position of every moon by applying velocity.
    Time progresses by one step once all of the positions are updated.
    """
    moons = parse_input(data)
    x_moons = []
    y_moons = []
    z_moons = []
    for moon in moons:
        x_moons.append(Moon(Point(moon.position[0]), Point(moon.velocity[0])))
        y_moons.append(Moon(Point(moon.position[1]), Point(moon.velocity[1])))
        z_moons.append(Moon(Point(moon.position[2]), Point(moon.velocity[2])))
    x = find_loop(x_moons)
    y = find_loop(y_moons)
    z = find_loop(z_moons)
    return np.lcm(x, np.lcm(y, z))
コード例 #17
0
ファイル: day12.py プロジェクト: jsemric/advent-of-code-2019
def main():
    pos = np.array(lmap(parse, read_lines()), dtype=np.int32)
    vel = np.zeros_like(pos, np.int32)
    initial_pos = pos.copy()
    periods = np.zeros(pos.shape[1], np.int64)
    periods_left = list(range(pos.shape[1]))
    assert len(periods_left) == 3

    for i in range(1000):
        gravity = compute_gravity(pos)
        vel += gravity
        pos += vel

    vel = np.abs(vel)
    pos = np.abs(pos)
    energy = np.sum(vel.sum(axis=1) * pos.sum(axis=1))
    print("1.)", energy)

    pos = initial_pos.copy()
    vel = np.zeros_like(pos)

    for i in range(240000):
        gravity = compute_gravity(pos)
        vel += gravity
        pos += vel
        period_found = None
        for j in periods_left:
            if np.all(pos[:, j] == initial_pos[:, j]):
                period_found = j
                periods[j] = i + 1
                break  # hopefully no similar periods

        if period_found is not None:
            periods_left.remove(period_found)

        if not periods_left:
            break

    periods += 1  # next step starts the period
    lcm = np.lcm(periods[0], np.lcm(periods[1], periods[2]))
    print("2.)", lcm)
コード例 #18
0
    def execute(self, context):
        r = round(self.r, 6)
        R = round(self.R, 6)
        d = round(self.d, 6)
        Rmr = round(R - r, 6)  # R-r
        Rpr = round(R + r, 6)  # R +r
        Rpror = round(Rpr / r, 6)  # (R+r)/r
        Rmror = round(Rmr / r, 6)  # (R-r)/r
        maxangle = 2 * math.pi * (
            (np.lcm(round(self.R * 1000), round(self.r * 1000)) / (R * 1000)))

        if self.typecurve == "hypo":
            xstring = str(Rmr) + "*cos(t)+" + str(d) + "*cos(" + str(
                Rmror) + "*t)"
            ystring = str(Rmr) + "*sin(t)-" + str(d) + "*sin(" + str(
                Rmror) + "*t)"
        else:
            xstring = str(Rpr) + "*cos(t)-" + str(d) + "*cos(" + str(
                Rpror) + "*t)"
            ystring = str(Rpr) + "*sin(t)-" + str(d) + "*sin(" + str(
                Rpror) + "*t)"

        zstring = '(' + str(round(
            self.dip,
            6)) + '*(sqrt(((' + xstring + ')**2)+((' + ystring + ')**2))))'

        print("x= " + str(xstring))
        print("y= " + str(ystring))
        print("z= " + str(zstring))
        print("maxangle " + str(maxangle))

        x = Expression(xstring, ["t"])  # make equation from string
        y = Expression(ystring, ["t"])  # make equation from string
        z = Expression(zstring, ["t"])  # make equation from string

        # build function to be passed to create parametric curve ()

        def f(t, offset: float = 0.0):
            c = (x(t), y(t), z(t))
            return c

        iter = int(maxangle * 10)
        if iter > 10000:  # do not calculate more than 10000 points
            print("limiting calculatons to 10000 points")
            iter = 10000
        parametric.create_parametric_curve(f,
                                           offset=0.0,
                                           min=0,
                                           max=maxangle,
                                           use_cubic=True,
                                           iterations=iter)

        return {'FINISHED'}
コード例 #19
0
 def get_output_digit(self, d):
     kernel_period = 4 * (d + 1)
     read_length = lcm(self.period, kernel_period)
     full_reads = self.data.length // read_length
     frag_reads = self.data.length % read_length
     out = 0
     if 1 <= full_reads <= 9:
         for j in range(min(read_length, self.data.length)):
             out += self.data[j] * self.kernel[(j + 1) // (d + 1)]
     for j in range(frag_reads):
         out += self.data[j] * self.kernel[(j + 1) // (d + 1)]
     return abs(out) % 10
コード例 #20
0
def generate(p=number.getPrime(randint(660, 700)),
             q=number.getPrime(randint(660, 700))):
    n = p * q

    phi = (p - 1) * (q - 1)
    carm_func = np.lcm(p - 1, q - 1)

    while True:
        e = randint(2, carm_func)
        if np.gcd(e, carm_func) == 1: break
    d = int(modinv(e, phi))
    return (n, e, d)
コード例 #21
0
def part_two(timetable: list, max_iter: int) -> int:
    num1 = timetable[0]
    # The step can get very large, np uses int32 by default, make sure it is initialized as int64
    step = np.int64(num1)
    counter = 0
    for num2 in timetable:
        # Find the LCM with offset for the previous aggregated number and the new one
        num1 = get_lcm(num1, num2, counter, step, max_iter)
        # Calculate the step for the next LCM calculation (major speed-up)
        step = np.lcm(step, num2)
        counter = counter + 1
    return num1
コード例 #22
0
def __abc_smc_plotting(fig: plt.Figure, y_obs: [[float]],
                       priors: ["stats.Distribution"],
                       fitting_model: Models.Model, model_hat: Models.Model,
                       accepted_params: [[float]],
                       weights: [float]) -> plt.Figure:

    n_params = (fitting_model.n_params - 2) if (
        type(fitting_model) is Models.SIRModel) else fitting_model.n_params
    n_rows = max([1, np.lcm(n_params, fitting_model.dim_obs)])

    gs = fig.add_gridspec(n_rows, 2)

    # plot fitted model
    row_step = n_rows // fitting_model.dim_obs
    for i in range(fitting_model.dim_obs):
        ax = fig.add_subplot(gs[i * row_step:(i + 1) * row_step, -1])
        y_obs_dim = [y[i] for y in y_obs]
        Plotting.plot_accepted_observations(ax,
                                            fitting_model.x_obs,
                                            y_obs_dim, [],
                                            model_hat,
                                            dim=i)

    row_step = n_rows // n_params
    if (type(fitting_model) is Models.SIRModel):
        for i in range(2, fitting_model.n_params):
            ax = fig.add_subplot(gs[(i - 2) * row_step:(i - 2 + 1) * row_step,
                                    0])
            name = "theta_{}".format(i)
            accepted_parameter_values = [theta[i] for theta in accepted_params]
            Plotting.plot_parameter_posterior(
                ax,
                name,
                accepted_parameter_values,
                predicted_val=model_hat.params[i],
                prior=priors[i],
                dim=i,
                weights=weights)
    else:
        for i in range(fitting_model.n_params):
            ax = fig.add_subplot(gs[i * row_step:(i + 1) * row_step, 0])
            name = "theta_{}".format(i)
            parameter_values = [theta[i] for theta in accepted_params]
            Plotting.plot_parameter_posterior(
                ax,
                name,
                accepted_parameter_values,
                predicted_val=model_hat.params[i],
                prior=priors[i],
                dim=i,
                weights=weights)

    return fig
コード例 #23
0
def main():
    # Command line arguments
    process_args()

    # Load vr data
    vr_data = preprocessing.load_vr_file(vr_file)
    vr_vec = vr_data.frames[:, 1]
    vr_fps = vr_data.fps
    vr_vec = (vr_vec - np.mean(vr_vec)) / np.std(vr_vec)

    # Load mocap data
    mocap_data = preprocessing.load_mocap_file_helper(open(mocap_file, "r"))
    mocap_vec = mocap_data.frames[:, 1]
    mocap_fps = mocap_data.fps
    mocap_vec = (mocap_vec - np.mean(mocap_vec)) / np.std(mocap_vec)

    # Upsample both sequences
    fps = np.lcm(vr_fps, mocap_fps)
    vr_vec_upsampled = np.interp(np.arange(0, vr_vec.size, vr_fps / fps),
                                 np.arange(vr_vec.size), vr_vec)
    mocap_vec_upsampled = np.interp(
        np.arange(0, mocap_vec.size, mocap_fps / fps),
        np.arange(mocap_vec.size), mocap_vec)

    predicted_offset = get_temporal_offset(mocap_vec_upsampled,
                                           vr_vec_upsampled, fps, 0, 10)
    print("Predicted Offset:", predicted_offset)

    #"""
    start, end, window, gap = 0, 60, 1, 30
    offsets = []
    while end < vr_vec.size / vr_fps:
        offset = get_temporal_offset(mocap_vec_upsampled,
                                     vr_vec_upsampled,
                                     fps,
                                     predicted_offset,
                                     10,
                                     start=start,
                                     end=end)
        offsets.append(offset)
        start, end = start + gap, end + gap

    variability = np.array(offsets) - predicted_offset
    print("Variability:", variability)
    print("Average variability: ", np.mean(variability))
    #"""

    plt.plot(
        np.arange(mocap_vec.size) / mocap_fps + predicted_offset, mocap_vec,
        'b')
    plt.plot(np.arange(vr_vec.size) / vr_fps, vr_vec, 'r')
    plt.show()
コード例 #24
0
 def get_minimum_sample_time(self):
     """
     Method to generate a minimum time-array as
     long as is needed to be to garantie every
     tooth mesh combination has been considered.
     """
     # Get meshing time between two tooth
     time2tooth = (1 / self.rotational_frequency_in) / self.GearPropIn['no_teeth']
     # Get lowest common multiple
     toothmeshlcm = np.lcm(self.GearPropIn['no_teeth'],
                                 self.GearPropOut['no_teeth'])
     min_time = time2tooth * toothmeshlcm
     return(min_time)
コード例 #25
0
ファイル: day13.py プロジェクト: jmcarter17/aoc2020
def part2(data):
    data = [(d, idx) for idx, d in enumerate(data) if d]
    guess, skip = data[0][0], data[0][0]
    idx = 1
    total_len = len(data)
    while idx < total_len:
        x, i = data[idx]
        while (guess + i) % x != 0:
            guess += skip
        skip = np.lcm(skip, data[idx][0])
        idx += 1

    return guess
コード例 #26
0
 def löse2(self):
     kgv_old = kgv = uint64(1)
     id = dt = time = uint64(0)
     for dt, id in self.ids2:
         dt = dt % id  #  SollWartezeit > BusID == "ZyklusZeit des Busses"
         kgv_old = kgv
         kgv = lcm(
             kgv, uint64(id)
         )  #least common multiple from numpy (10 times faster as native *)
         for _ in range(id):
             if ((id - time) % id) == dt: break
             time += kgv_old
     return time
コード例 #27
0
def adjust_block_compatibility(ws, bs, gs):
    """Adjusts the compatibility of widths, bottlenecks, and groups."""
    assert len(ws) == len(bs) == len(gs)
    assert all(w > 0 and b > 0 and g > 0 for w, b, g in zip(ws, bs, gs))
    vs = [int(max(1, w * b)) for w, b in zip(ws, bs)]
    # make sure widths not smaller than groups
    gs = [int(min(g, v)) for g, v in zip(gs, vs)]
    ms = [np.lcm(g, b) if b > 1 else g for g, b in zip(gs, bs)]
    # make suer that widths in bottlenecks are common multiple of bs and gs
    vs = [max(m, int(round(v / m) * m)) for v, m in zip(vs, ms)]
    ws = [int(v / b) for v, b in zip(vs, bs)]
    assert all(w * b % g == 0 for w, b, g in zip(ws, bs, gs))
    return ws, bs, gs
コード例 #28
0
ファイル: fracs.py プロジェクト: sarnavskaa/python-labs
    def __sub__(self, other):  # frac1-frac2, frac-int
        if not isinstance(other, (Frac, int)):
            raise ValueError("Invalid value format, it must be Frac or Integer value.")

        if isinstance(other, Frac):
            if self.y == other.y:
                self.x -= other.x
                return Frac(self.x, self.y)
            lcm = np.lcm(self.y, other.y)
            return Frac(self.x * (lcm // self.y) - other.x * (lcm // other.y), lcm)

        if isinstance(other, int):
            return Frac(self.x - self.y * other, self.y)
コード例 #29
0
ファイル: ElectricalUtility.py プロジェクト: ccc2876/research
def generate_keys():
    global private_key, n, g
    # hard code these
    # set these to be higher than SSS
    p = 5
    q = 7

    private_key = numpy.lcm(p - 1, q - 1)
    n = p * q
    g = n + 1
    print("n", n)
    print("g", g)
    return n, g
コード例 #30
0
def AWG_Sinewave(ifreq, Ioffset, Qoffset, Iamp, Qamp, Iphase, Qphase):
    '''
    ifreq: IF frequency in MHz
    '''

    AWG.Clear_ArbMemory(awgsess)
    WAVE = []
    ifvoltag = [min(abs(Qamp), 1), min(abs(Iamp),
                                       1)]  # contain amplitude within 1V
    iffunction = ['sin', 'cos']
    iffreq = [ifreq, ifreq]
    ifoffset = [Qoffset, Ioffset]
    ifphase = [Qphase, Iphase]

    # construct waveform:
    for ch in range(2):
        channel = str(ch + 1)

        Nperiod = lcm(round(1000 / iffreq[ch] / dt * 100), 800) // 100
        print("Waveform contains %s points per sequence" % Nperiod)
        wavefom = [
            ifvoltag[ch] *
            eval(iffunction[ch] + '(x*%s*%s/1000*2*pi + %s/180*pi)' %
                 (dt, iffreq[ch], ifphase[ch])) + ifoffset[ch]
            for x in range(Nperiod)
        ]

        stat, wave = AWG.CreateArbWaveform(awgsess, wavefom)
        # print('Waveform channel %s: %s <%s>' %(channel, wave, status_code(stat)))
        WAVE.append(wave)
    # Building Sequences:
    for ch in range(2):
        channel = str(ch + 1)
        status, seqhandl = AWG.CreateArbSequence(
            awgsess, [WAVE[ch]],
            [1])  # loop# canbe >1 if longer sequence is needed in the future!
        # print('Sequence channel %s: %s <%s>' %(channel, seqhandl, status_code(status)))
        # Channel Assignment:
        stat = AWG.arb_sequence_handle(awgsess,
                                       RepCap=channel,
                                       action=["Set", seqhandl])
        # print('Sequence channel %s embeded: %s <%s>' %(channel, stat[1], status_code(stat[0])))
    # Trigger Settings:
    for ch in range(2):
        channel = str(ch + 1)
        AWG.operation_mode(awgsess, RepCap=channel, action=["Set", 0])
        AWG.trigger_source_adv(awgsess, RepCap=channel, action=["Set", 0])
    AWG.Init_Gen(awgsess)
    AWG.Send_Pulse(awgsess, 1)

    return