コード例 #1
0
def draw_image(hMotor, vMotor, inputDict):

    global returnToMain
    returnToMain = False

    #Create stepper motors that use the basi_stepper library for drawing images
    xMotor = bs.stepper(6, 19, 13, 26, _name='horiz', _backlash=hBacklash)
    yMotor = bs.stepper(4, 27, 17, 22, _name='vert', _backlash=vBacklash)
    xMotor.set_motorStepInc(minMotorStepInc)
    yMotor.set_motorStepInc(minMotorStepInc)

    fileName = inputDict['fileName']

    #Open the file and convert it to black and white
    directory = "/home/pi/EAS/shade_image/Images/"
    im_bw = Image.open(directory + fileName)
    im_bw = im_bw.convert('1', dither=Image.NONE)

    #Resize the image to be no more than the max size the EAS can handle
    im_bw = si.resize(im_bw, si.maxY, si.maxX)

    #Convert the image to a numpy array
    im_bw = np_asarray(im_bw, np_uint8) * 255

    #Find  an unshaded region
    (yStart, xStart) = si.get_start(im_bw)
    #    print("Start at", yStart, xStart)

    #Shade the first pixel in the image and drawing since this is where the cur$
    im_bw[yStart][
        xStart] = 100  #First point already shaded since cursor is th$

    #Reset the current position on the motors to match the image coordinate settings
    #(0, 0) for hgraphs is center; (0, 0) for images is top left
    vAdjust = int(im_bw.shape[0] / 2)
    hAdjust = int(im_bw.shape[1] / 2)
    #    print("hAdjust:", hAdjust, "vAdjust:", vAdjust)
    yMotor.set_currPos(vMotor.get_currPos() + vAdjust * si.pixelSizeY)
    xMotor.set_currPos(hMotor.get_currPos() + hAdjust * si.pixelSizeX)
    #    print("hCurr:", hMotor.get_currPos)
    #    print("vCurr:", vMotor.get_currPos)

    #Move to the starting point for the drawing and erase the EAS
    yMotor.go_to(yStart * si.pixelSizeY)
    xMotor.go_to(xStart * si.pixelSizeX)
    eMotor.set_motorStepInc(10000)
    eMotor.set_clockwise(False)
    eraser.erase(eMotor, eraseSpeed, 1024, 7.5, numShakes, 0.4)
    eMotor.turn_off()

    #Call the function to create the drawing
    returnToMain = si.draw_shaded_image(xMotor, yMotor, yStart, xStart, im_bw,
                                        s)

    #Reset the origin to original location (center)
    vMotor.set_currPos(yMotor.get_currPos() - vAdjust * si.pixelSizeY)
    hMotor.set_currPos(xMotor.get_currPos() - hAdjust * si.pixelSizeX)

    #Turn off motors
    clean_up()
コード例 #2
0
def parse_matrix_part(matrix, szSub, ovSub):
    assert matrix.ndim == 3
    assert np_ndim(szSub) == 1
    assert len(szSub) == 3
    assert np_ndim(ovSub) == 1
    assert len(ovSub) == 3

    matrix_shape = np_asarray(matrix.shape, dtype=int)
    len_each_section, _, _ = szSub
    shift_length, _, _ = ovSub

    len_each_section_range = np_arange(len_each_section)

    matrix_shape = np_ceil((matrix_shape - szSub + 1)/ovSub).astype(int)
    num_rows_overlap, num_elements, num_beams = matrix_shape
    result_matrix = np_zeros((np_prod(szSub), np_prod(matrix_shape)))
    cnt = 0
    for i in range(num_beams):
        for j in range(num_elements):
            for k in range(num_rows_overlap):
                index_1 = len_each_section_range + k * shift_length
                index_2 = j
                index_3 = i
                tmp = matrix[index_1, index_2, index_3]
                result_matrix[:, cnt] = tmp
                cnt += 1

    return result_matrix
コード例 #3
0
def LoadSim_pressed(p1):
    global w, loaddata, data_dir_load, issim, f_ph

    samples = int(point_num.get())

    parse_x(st_de.get(), samples)
    f_de = parse_function(eq_de.get())
    #parse_x(st_de.get(), samples)
    f_te = parse_function(eq_te.get())
    #parse_x(st_de.get(), samples)
    f_ph = parse_function(eq_ph.get())

    times_read = st_de.get()
    times_r_fl = float(times_read)
    timel = [times_r_fl * i for i in range(samples)]
    #fun_list=array([f_de[0],f_te[0],f_ph[0]])
    fun_list = array([f_de, f_te, f_ph])
    ck_list = [ck_rand_de.get(), ck_rand_te.get(), ck_rand_ph.get()]
    pow_list = [rand_de.get(), rand_te.get(), rand_ph.get()]
    myR = []

    for n, i in enumerate(ck_list):
        if i:
            print("added noise")
            myR = datagenerator.RandomWalk(float(pow_list[n]),
                                           1 / float(st_de.get()))
            myR.funrand(samples)
            fun_list[n] += myR.randarr
            del myR

    func_read = [eq_de.get(), eq_te.get(), eq_ph.get()]

    last_x = parse_x(times_read, samples)
    last_func = [parse_function(ff) for ff in func_read]

    plots = array(np_asarray(last_func))
    f_ph = fun_list[2]
    plotrefresh(pl1[0],
                pl1[1],
                fun_list,
                y=timel,
                col=['r', "orange", "green"],
                ylab="del,the,phi (rad)")
    loaddata = list(
        datagenerator.datagen(fun_list[0], fun_list[1], fun_list[2]))
    loaddata.insert(0, timel)
    loadata = array(loaddata)
    data_dir_load = 1
    issim = 1

    #write sim pars to file
    datagenerator.writefile(fun_list[0], fun_list[1], fun_list[2])

    write_last(func_read=func_read,
               times_read=times_read,
               samples=samples,
               rands=pow_list)
コード例 #4
0
  def __array__(self, dtype=None):
    """Returns a NumPy ndarray.

    This allows instances of this class to be directly used in NumPy routines.
    However, doing that may force a copy to CPU.

    Args:
      dtype: A NumPy compatible type.

    Returns:
      A NumPy ndarray.
    """
    return np_asarray(self.data, dtype)
    def rle_decode(self, mask_string: str, shape=(768, 768)):
        '''
        mask_rle: run-length as string formated (start length)
        shape: (height,width) of array to return
        Returns numpy array, 1 - mask, 0 - background

        '''
        s = mask_string.split()
        starts, lengths = [
            np_asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])
        ]
        starts -= 1
        ends = starts + lengths
        img = np_zeros(shape[0] * shape[1], dtype=np_uint8)
        for lo, hi in zip(starts, ends):
            img[lo:hi] = 255
        return img.reshape(shape).T  # Needed to align to RLE direction
コード例 #6
0
    def predict(self, X, post_analyze_distribution=False, verbose=1):
        df = pd_df(X)
        print("started prediction for ", self.cluster_model, " X(", X.shape,
              ")")

        if self.cluster_model == 'KMeans':
            # default vals for kmeans --> max_iter=300, 1e-4
            self.predictedKlusters = self.trained_model.predict(df).astype(
                float)
            self.kluster_centers = self.trained_model.cluster_centers_.astype(
                float)
        elif self.cluster_model == 'GMM_full':
            # default vals for gmm --> max_iter=100, 1e-3
            _, log_resp = self.trained_model._e_step(df)
            self.predictedKlusters = log_resp.argmax(axis=1)
        elif self.cluster_model == 'GMM_diag':
            _, log_resp = self.trained_model._e_step(df)
            self.predictedKlusters = log_resp.argmax(axis=1)
        elif self.cluster_model == 'Spectral':
            self.predictedKlusters = self.trained_model.predict(X).labels_

        self.kluster_centroids = get_cluster_centroids(
            X,
            self.predictedKlusters,
            kluster_centers=self.kluster_centers,
            verbose=0)

        if post_analyze_distribution:
            numOf_1_sample_bins, histSortedInv = analyzeClusterDistribution(
                self.predictedKlusters, self.n_clusters, verbose=1)
            unique_clust_cnt = len(np_unique(self.predictedKlusters))
            print("prediction completed for ",
                  self.cluster_model, " - unique_clust_cnt(",
                  str(unique_clust_cnt), "), numOf_1_sample_bins(",
                  str(numOf_1_sample_bins), ")")
        return np_asarray(self.predictedKlusters,
                          dtype=int), self.kluster_centroids
コード例 #7
0
 def fit_predict(self, X, post_analyze_distribution=False, verbose=1):
     self.fit(X,
              post_analyze_distribution=post_analyze_distribution,
              verbose=verbose)
     return np_asarray(self.predictedKlusters,
                       dtype=int), self.kluster_centroids
コード例 #8
0
ファイル: images.py プロジェクト: matteoterruzzi/aptl3
def imageToArray(im):
    return np_asarray(
        im.convert('RGB')
    )  # converts from grayscale to RGB and also removed alpha if present
コード例 #9
0
def compare_time(objects=None, functions=[], num_times=1000, filepath=None, **kwargs):
  if not isinstance(functions, list):
    functions = [functions]
  times = {}
  t_test_table = []
  headers = ['Function']
  if objects is not None:
    rands = random_order(len(objects), num_times)
    obj_table = [[[] for _ in range(len(functions))] for _ in range(len(objects))]
    # For every object, time execution of every function, num_times
    for func_i, func in enumerate(functions):
      for rand in rands:
        obj = objects[rand] # Select object randomly
        if len(kwargs):
          start()
          func(obj, **kwargs)
        else:
          start()
          func(obj)
        obj_table[rand][func_i].append(end(verbose=False))
    
    # For every function, calc t-score and p-value
    # Function | obj1 avg time | obj1 std | obj2 avg time | obj2 std | obj2 t-score | obj2 p-value
    headers.append(get_name(objects[0]) + ' Min')
    headers.append('Avg Sec')
    headers.append('Conclusion')
    for obj in objects[1:]:
      headers.append(get_name(obj) + ' Min')
      headers.append('Avg Sec')
      headers.append('Conclusion')
      headers.append('p-value')
    for func_i, func in enumerate(functions):
      func_scores = [get_name(func)]
      obj1_times = obj_table[0][func_i]
      obj1_times = np_asarray(obj1_times)
      func_scores.append(obj1_times.min())
      func_scores.append(np_mean(obj1_times))
      func_scores.append('Baseline')
      for obj_i in range(1, len(objects)): # Skip first obj (baseline)
        obj_times = obj_table[obj_i][func_i]
        t, p = ttest_ind(obj1_times, obj_times)
        conc = get_conclusion(t, p)
        obj_times = np_asarray(obj_times)
        func_scores.append(obj_times.min())
        func_scores.append(np_mean(obj_times))
        func_scores.append(conc)
        func_scores.append(p)
      t_test_table.append(func_scores)
  else:
    rands = random_order(len(functions), num_times)
    headers.extend(['Min', 'Avg Sec', 'Conclusion', 'p-value'])
    func_table = [[] for _ in range(len(functions))]
    for rand in rands:
      func = functions[rand]
      if len(kwargs):
        start()
        func(**kwargs)
      else:
        start()
        func()
      func_table[rand].append(end(verbose=False))
    func1_times = func_table[0]
    func1_times = np_asarray(func1_times)

    t_test_table.append([get_name(functions[0]), func1_times.min(), np_mean(func1_times), 'Baseline'])
    for func_i in range(1, len(functions)): # Skip first function (baseline)
      func = functions[func_i]
      func_scores = [get_name(func)]
      func_times = func_table[func_i]
      t, p = ttest_ind(func1_times, func_times)
      conc = get_conclusion(t, p)
      func_times = np_asarray(func_times)
      func_scores.extend([func_times.min(), np_mean(func_times), conc, p])
      t_test_table.append(func_scores)
  
  msg = "Timing test iterations: "+str(num_times)+"\n"
  msg += tabulate(t_test_table, headers=headers)
  msg += "\n"
  print(msg)
  t_test_table.insert(0, headers)
  if filepath is not None:
    if filepath is True or filepath == '':
      filepath = '.csv'
    if filepath.startswith('.'):
      filename = ''
      if objects:
        for obj in objects:
          filename += get_name(obj) + '-'
      if len(filename):
        filename = filename[:-1] + '_'
      for func in functions:
        filename += get_name(func) + '-'
      if len(filename):
        filename = filename[:-1] + '_'
      filename += str(num_times)
      filepath = filename + filepath # Add extension
      # e.g. obj1-obj2_func1-func2
    vsave(t_test_table, filepath=filepath)

  return t_test_table