コード例 #1
0
def density_op_random(n, real_or_complex=2, rank=None):
    r"""随机生成一个密度矩阵的 numpy 形式。

    Args:
        n (int): 量子比特数量
        real_or_complex (int, optional): 默认为 2,即生成复数组,若为 1,则生成实数组
        rank (int, optional): 矩阵的秩,默认为 :math:`2^n` (当 ``rank`` 为 ``None`` 时)

    Returns:
        numpy.ndarray: 一个形状为 ``(2**n, 2**n)`` 的 numpy 数组
    """
    assert n > 0, 'qubit number must be positive'
    rank = rank if rank is not None else 2**n
    assert 0 < rank <= 2**n, 'rank is an invalid number'

    if real_or_complex == 1:
        psi = np_random.randn(2**n, rank)
    else:
        psi = np_random.randn(2**n, rank) + 1j * np_random.randn(2**n, rank)

    psi_dagger = psi.conj().T
    rho = np_matmul(psi, psi_dagger)
    rho = rho / np_trace(rho)

    return rho.astype('complex128')
コード例 #2
0
def purity(rho):
    r"""计算量子态的纯度。

    .. math::

        P = \text{tr}(\rho^2)

    Args:
        rho (numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        float: 输入的量子态的纯度
    """
    gamma = np_trace(np_matmul(rho, rho))

    return gamma.real
コード例 #3
0
ファイル: main.py プロジェクト: zhangqiang-qt/Quantum
def main():
    # 生成用泡利字符串表示的特定的哈密顿量
    H = [[-1.0, 'z0,z1'], [-1.0, 'z1,z2'], [-1.0, 'z0,z2']]

    # 生成哈密顿量的矩阵信息
    N_SYS_B = 3  # 用于生成吉布斯态的子系统B的量子比特数
    hamiltonian = pauli_str_to_matrix(H, N_SYS_B)

    # 生成理想情况下的目标吉布斯态 rho
    beta = 1.5  # 设置逆温度参数 beta
    rho_G = scipy.linalg.expm(-1 * beta * hamiltonian) / np_trace(scipy.linalg.expm(-1 * beta * hamiltonian))

    # 设置成 Paddle quantum 所支持的数据类型
    hamiltonian = hamiltonian.astype("complex128")
    rho_G = rho_G.astype("complex128")

    rho_B = Paddle_GIBBS(hamiltonian, rho_G)
    print(rho_B)
コード例 #4
0
def main():
    # Generate Pauli string representing a specific Hamiltonian
    H = [[-1.0, 'z0,z1'], [-1.0, 'z1,z2'], [-1.0, 'z0,z2']]

    # Generate the marix form of the Hamiltonian
    N_SYS_B = 3  # Number of qubits in subsystem B used to generate Gibbs state
    hamiltonian = pauli_str_to_matrix(H, N_SYS_B)

    # Generate the target Gibbs state rho
    beta = 1.5  # Set inverse temperature beta
    rho_G = scipy.linalg.expm(-1 * beta * hamiltonian) / np_trace(
        scipy.linalg.expm(-1 * beta * hamiltonian))

    # Convert to the data type supported by Paddle Quantum
    hamiltonian = hamiltonian.astype("complex128")
    rho_G = rho_G.astype("complex128")

    rho_B = Paddle_GIBBS(hamiltonian, rho_G)
    print(rho_B)
コード例 #5
0
def gate_fidelity(U, V):
    r"""计算两个量子门的保真度。

    .. math::

        F(U, V) = |\text{tr}(UV^\dagger)|/2^n

    :math:`U` 是一个 :math:`2^n\times 2^n` 的 Unitary 矩阵。

    Args:
        U (numpy.ndarray): 量子门的酉矩阵形式
        V (numpy.ndarray): 量子门的酉矩阵形式

    Returns:
        float: 输入的量子门之间的保真度
    """
    assert U.shape == V.shape, 'The shape of two unitary matrices are different'
    dim = U.shape[0]
    fidelity = absolute(np_trace(np_matmul(U, V.conj().T))) / dim

    return fidelity
コード例 #6
0
def H_generator():
    """
    Generate a Hamiltonian with trivial descriptions
    Returns: A Hamiltonian
    """
    # Generate Pauli string representing a specific Hamiltonian
    H = [[-1.0, 'z0,z1'], [-1.0, 'z1,z2'], [-1.0, 'z0,z2']]

    # Generate the matrix form of the Hamiltonian
    N_SYS_B = 3  # Number of qubits in subsystem B used to generate Gibbs state
    hamiltonian = pauli_str_to_matrix(H, N_SYS_B)

    # Generate the target Gibbs state rho
    beta = 1.5  # Set inverse temperature beta
    rho_G = scipy.linalg.expm(-1 * beta * hamiltonian) / np_trace(
        scipy.linalg.expm(-1 * beta * hamiltonian))

    # Convert to the data type supported by Paddle Quantum
    hamiltonian = hamiltonian.astype("complex128")
    rho_G = rho_G.astype("complex128")
    return hamiltonian, rho_G
コード例 #7
0
def H_generator():
    """
    Generate a Hamiltonian with trivial descriptions
    Returns: A Hamiltonian
    """
    # 生成用泡利字符串表示的特定的哈密顿量
    H = [[-1.0, 'z0,z1'], [-1.0, 'z1,z2'], [-1.0, 'z0,z2']]

    # 生成哈密顿量的矩阵信息
    N_SYS_B = 3  # 用于生成吉布斯态的子系统B的量子比特数
    hamiltonian = pauli_str_to_matrix(H, N_SYS_B)

    # 生成理想情况下的目标吉布斯态 rho
    beta = 1.5  # 设置逆温度参数 beta
    rho_G = scipy.linalg.expm(-1 * beta * hamiltonian) / np_trace(
        scipy.linalg.expm(-1 * beta * hamiltonian))

    # 设置成 Paddle quantum 所支持的数据类型
    hamiltonian = hamiltonian.astype("complex128")
    rho_G = rho_G.astype("complex128")
    return hamiltonian, rho_G