def setupDebug(self): node = BulletDebugNode("Debug") node.showWireframe(True) self.world.setDebugNode(node) np = self.render.attachNewNode(node) np.show()
def pngs_equal(a, b): if files_equal(a, b): print a, 'and', b, 'are perfectly equal' return True im_a = numpy.imread(a) * 255.0 im_b = numpy.imread(b) * 255.0 if im_a.shape != im_b.shape: print a, 'and', b, 'have different size:', im_a.shape, im_b.shape return False diff = im_b - im_a alpha = im_a.shape[-1] == 4 if alpha: diff_alpha = diff[:, :, 3] equal = True print a, 'and', b, 'are different, analyzing whether it is just the undefined colors...' print 'Average difference (255=white): (R, G, B, A)' print numpy.mean(numpy.mean(diff, 0), 0) print 'Average difference with premultiplied alpha (255=white): (R, G, B, A)' diff = diff[:, :, 0:3] if alpha: diff *= numpy.imread(a)[:, :, 3:4] res = numpy.mean(numpy.mean(diff, 0), 0) print res if numpy.mean(res) > 0.01: # dithering should make this value nearly zero... equal = False print 'Maximum abs difference with premultiplied alpha (255=white): (R, G, B, A)' res = numpy.amax(numpy.amax(abs(diff), 0), 0) print res if max(abs(res)) > 1.1: # this error will be visible # - smaller errors are hidden by the weak alpha # (but we should pay attention not to accumulate such errors at each load/save cycle...) equal = False if not equal: print 'Not equal enough!' if alpha: numpy.figure(1) numpy.title('Alpha') numpy.imshow(im_b[:, :, 3], interpolation='nearest') numpy.colorbar() numpy.figure(2) numpy.title('Green Error (multiplied with alpha)') numpy.imshow(diff[:, :, 1], interpolation='nearest') numpy.colorbar() if alpha: numpy.figure(3) numpy.title('Alpha Error') numpy.imshow(diff_alpha, interpolation='nearest') numpy.colorbar() numpy.show() return equal
def pngs_equal(a, b): if files_equal(a, b): print a, 'and', b, 'are perfectly equal' return True im_a = numpy.imread(a)*255.0 im_b = numpy.imread(b)*255.0 if im_a.shape != im_b.shape: print a, 'and', b, 'have different size:', im_a.shape, im_b.shape return False diff = im_b - im_a alpha = im_a.shape[-1] == 4 if alpha: diff_alpha = diff[:, :, 3] equal = True print a, 'and', b, 'are different, analyzing whether it is just the undefined colors...' print 'Average difference (255=white): (R, G, B, A)' print numpy.mean(numpy.mean(diff, 0), 0) print 'Average difference with premultiplied alpha (255=white): (R, G, B, A)' diff = diff[:, :, 0:3] if alpha: diff *= numpy.imread(a)[:, :, 3:4] res = numpy.mean(numpy.mean(diff, 0), 0) print res if numpy.mean(res) > 0.01: # dithering should make this value nearly zero... equal = False print 'Maximum abs difference with premultiplied alpha (255=white): (R, G, B, A)' res = numpy.amax(numpy.amax(abs(diff), 0), 0) print res if max(abs(res)) > 1.1: # this error will be visible # - smaller errors are hidden by the weak alpha # (but we should pay attention not to accumulate such errors at each load/save cycle...) equal = False if not equal: print 'Not equal enough!' if alpha: numpy.figure(1) numpy.title('Alpha') numpy.imshow(im_b[:, :, 3], interpolation='nearest') numpy.colorbar() numpy.figure(2) numpy.title('Green Error (multiplied with alpha)') numpy.imshow(diff[:, :, 1], interpolation='nearest') numpy.colorbar() if alpha: numpy.figure(3) numpy.title('Alpha Error') numpy.imshow(diff_alpha, interpolation='nearest') numpy.colorbar() numpy.show() return equal
def adaptIntPlot(f,a,b): """ Adaptive (doubling partition) integration. Minimizes function evaluations at the expense of some tedious array minipulations. """ maxiter = 20 miniter = 5 tolerance = 0.1 maxnx = 2**maxiter minnx = 2**miniter x = 0.*N.zeros(maxnx) dx = (b-a)/2.#**minsteps nx = 2 x[0] = a x[1] = a+dx integral = N.sum(f(x[1:2]))*dx # 1 so we don't include the first endpt dx /= 2. newintegral = integral/2. + N.sum(f(x[:nx]+dx))*dx for i in range(nx-1,-1,-1): x[2*i] = x[i] x[2*i+1] = x[i] + dx nx *= 2 keepgoing = 1 while keepgoing == 1: integral = newintegral dx /= 2. eff = f(x[:nx]+dx) N.plot(x[:nx]+dx,f(x[:nx]+dx)) newintegral = integral/2. + N.sum(eff)*dx#N.sum(f(x[:nx]+dx))*dx print newintegral*nx/(nx-1) for i in range(nx-1,-1,-1): x[2*i] = x[i] x[2*i+1] = x[i] + dx nx *= 2 keepgoing = 0 if integral*newintegral > 0.: if ((N.fabs(N.log(integral*(nx/2)/(nx/2-1)/(newintegral*nx/(nx-1)))) >\ tolerance) and (nx < maxnx/2)) or (nx < minnx): keepgoing = 1 elif integral*newintegral == 0.: print "Hmmm, we have a zero integral here. Assuming convergence." else: keepgoing = 1 N.show() print nx, if nx == maxnx/2: print 'No convergence in utils.adaptInt!' return newintegral*nx/(nx-1)
def showRoomLayout(self, showCeilings=True, showWalls=True, showFloors=True): for np in self.scene.scene.findAllMatches( '**/layouts/**/render-semantics/*c'): if showCeilings: np.show() else: np.hide() for np in self.scene.scene.findAllMatches( '**/layouts/**/render-semantics/*w'): if showWalls: np.show() else: np.hide() for np in self.scene.scene.findAllMatches( '**/layouts/**/render-semantics/*f'): if showFloors: np.show() else: np.hide()
def showRoomLayout(self, showCeilings=True, showWalls=True, showFloors=True): for np in self.scene.scene.findAllMatches('**/layouts/**/render/*c'): if showCeilings: np.show(self.cameraMask) else: np.hide(BitMask32.allOn()) for np in self.scene.scene.findAllMatches('**/layouts/**/render/*w'): if showWalls: np.show(self.cameraMask) else: np.hide(BitMask32.allOn()) for np in self.scene.scene.findAllMatches('**/layouts/**/render/*f'): if showFloors: np.show(self.cameraMask) else: np.hide(BitMask32.allOn())
# plt.ylabel('Error') # #plt.ylabel('Accuracy') # plt.xlabel('Momentum') # plt.show() # #For Batch Size # plt.xticks([1 ,2, 3, 4, 5],['1','10','100','500','1000']) # plt.plot([1 ,2, 3, 4, 5],[1.88155 ,1.25564 ,0.43665 ,1.11511 ,3.02981 ], 'bo', label='Training') # plt.plot([1 ,2, 3, 4, 5],[1.88067 ,1.71583 ,0.63323 ,1.07845 ,2.84858 ], 'go', label='Validation') # plt.axis([0, 5.5, 0.0, 3.2]) # plt.legend(loc=0) # plt.title('Cross-Entropy for different batch sizes for CNN') # #plt.title('Accuracy for different batch sizes for CNN') # plt.ylabel('Error') # #plt.ylabel('Accuracy') # plt.xlabel('Batch Size') # plt.show() #For 3.3 plt.xticks([1, 2, 3], ['[2 16]', '[15 16]', '[30 16]']) plt.plot([1, 2, 3], [0.28542, 0.74748, 0.28542], 'bo', label='Training') plt.plot([1, 2, 3], [0.27924, 0.70883, 0.27924], 'go', label='Validation') plt.axis([0.5, 3.5, 0, 0.8]) plt.legend(loc=0) #plt.title('Cross-Entropy for different number of filters in the first layer of CNN') plt.title('Accuracy for different number of filters in the first layer of CNN') #plt.ylabel('Error') plt.ylabel('Accuracy') plt.xlabel('Number of Units') plt.show()
factor1 = (1.0 / (sigma * ((2 * numpy.pi)**0.5))) factor2 = numpy.e**-(((x - mu)**2) / (2 * sigma**2)) return factor1 * factor2 xVals, yVals = [], [] mu, sigma = 0, 2.5 x = -10 while x <= 10: xVals.append(x) yVals.append(gaussian(x, mu, sigma)) x += 0.05 numpy.plot(xVals, yVals) numpy.title('Normal Distribution, mu = ' + str(mu)\ + ', sigma = ' + str(sigma)) numpy.show() # import scipy.integrate # def checkEmpirical(numTrials): # for t in range(numTrials): # mu = random.randint(-10, 10) # sigma = random.randint(1, 10) # print('For mu =', mu, 'and sigma =', sigma) # for numStd in (1, 1.96, 3): # area = scipy.integrate.quad(gaussian, # mu-numStd*sigma, # mu+numStd*sigma, # (mu, sigma))[0] # print(' Fraction within', numStd, # 'std =', round(area, 4))
import csv import numpy as ___ import _________ as plt from mpl_toolkits.mplot3d import Axes3D g = open("../galaxygas.csv","___") gasfile = csv.reader(g) x=[] y=[] z=[] temp=[] density =[] for row in gasfile: x.append(_____(row[0])) y.append(float(row[1])) z.______(float(row[2])) temp.append(np.log10(float(row[3]))) density.append(np.log10(float(row[4]))) g.close() cm = plt.get_cmap("nipy_spectral") fig = plt.figure() ax = fig.__________(111,projection="3d") image = ax.scatter(x,y,z,c=temp,vmin=3,vmax=7,s=10,cmap=cm) bar = plt.colorbar(image) bar.set_label("Log Gas Temperature (K)") ___.show()
import numpy as np import matplotlib as mpl x = np.linspace(0, 1, 100) y = np.sin(x) np.plot(x, y) np.show()
import csv import numpy as ___ import _________ as plt from mpl_toolkits.mplot3d import Axes3D g = open("../galaxygas.csv", "___") gasfile = csv.reader(g) x = [] y = [] z = [] temp = [] density = [] for row in gasfile: x.append(_____(row[0])) y.append(float(row[1])) z.______(float(row[2])) temp.append(np.log10(float(row[3]))) density.append(np.log10(float(row[4]))) g.close() cm = plt.get_cmap("nipy_spectral") fig = plt.figure() ax = fig.__________(111, projection="3d") image = ax.scatter(x, y, z, c=temp, vmin=3, vmax=7, s=10, cmap=cm) bar = plt.colorbar(image) bar.set_label("Log Gas Temperature (K)") ___.show()
import pandas as choi #melakukan import pada library pandas sebagai arjun laptop = { "Nama Laptop": ['Asus', 'ROG', 'Lenovo', 'Samsung'] } #membuat varibel yang bernama laptop, dan mengisi dataframe nama2 laptop x = Arjun.DataFrame( laptop ) #variabel x membuat DataFrame dari library pandas dan akan memanggil variabel laptop. print(' Arjun Punya Laptop ' + x) #print hasil dari x # In[44]: Soal2 import numpy as Arjun #melakukan import numpy sebagai arjun matrix_x = Arjun.eye( 10) #membuat matrix dengan numpy dengan menggunakan fungsi eye matrix_x #deklrasikan matrix_x yang telah dibuat print(matrix_x) #print matrix_x yang telah dibuat dengan 10x10 # In[44]: Soal3 import matplotlib.pyplot as Arjun #import matploblib sebagai arjun Arjun.plot([1, 1, 7, 4, 0, 2, 1]) #memberikan nilai plot atau grafik pada arjun Arjun.xlabel('Arjun Yuda Firwanda') #memberikan label pada x Arjun.ylabel('1174008') #memberikan label pada y Arjun.show() #print hasil plot berbentuk grafik
def __mesh_colour_callback(self, dc: DynamicColour, np: NodePath) -> None: if dc.visible: np.show() else: np.hide() np.set_color(LVecBase4f(*dc()), 1)