def other(): # 根据说明文档的关键字查找相关函数 # np.lookfor('sort') # 获取函数的帮助信息 # np.info('fft') # 打印函数、类或模块的源码 np.source(np.info)
def test_nanquantile_1(self): a = np.array([[10., 7., 4.], [3., 2., 1.]]) a[0][1] = np.nan print(a) b = np.quantile(a, 0.5) print(b) print(np.source(np.nanquantile)) c = np.nanquantile(a, 0.5) print(c) d = np.nanquantile(a, 0.5, axis=0) print(d) e = np.nanquantile(a, 0.5, axis=1, keepdims=True) print(e) m = np.nanquantile(a, 0.5, axis=0) out = np.zeros_like(m) f = np.nanquantile(a, 0.5, axis=0, out=out) print(f) print(m) g = a.copy() h = np.nanquantile(g, 0.5, axis=1, overwrite_input=True) print(h) assert not np.all(a==g) return
import scipy as sp from scipy import integrate from scipy import cluster from scipy import fftpack import numpy as np #Help/doc help(integrate) np.info(fftpack) #Source code of subpackages np.source(cluster)
from __future__ import annotations from io import StringIO from typing import Any import numpy as np FILE = StringIO() AR: np.ndarray[Any, np.dtype[np.float64]] = np.arange(10).astype(np.float64) def func(a: int) -> bool: ... np.deprecate(func) np.deprecate() np.deprecate_with_doc("test") np.deprecate_with_doc(None) np.byte_bounds(AR) np.byte_bounds(np.float64()) np.info(1, output=FILE) np.source(np.interp, output=FILE) np.lookfor("binary representation", output=FILE)
import numpy as np np.source(np.interp) np.source(np.array)
integralSegunda = np.polyint(f3grau, 2) integralTerceira = np.polyint(f3grau, 3) #Tratamento de sinais - convolucao #%% sinalConvoluido = np.convolve([1, 2, 3], [0, 1, 0.5]) plt.hist(sinalConvoluido, bins=3, density=100) #altere os bins plt.show() #Pesquisa print(np.info(np.polyval)) print(np.lookfor('binary representation')) print(np.source(np.interp))#funcao Valida apenas para objetos escritos em python '''Scipy É uma biblioteca de computação científica, que junto ao Numpy é capaz de realizar operações poderosas, tanto para o processamento de dados quanto para a prototipagem de sistemas.''' #%% import scipy as sp grafo = [[0,1,2,0],[0,0,0,1],[0,0,0,3],[0,0,0,0]]
def main(): np.source(ff.fft)
from io import StringIO from typing import Any, Dict import numpy as np AR: np.ndarray[Any, np.dtype[np.float64]] AR_DICT: Dict[str, np.ndarray[Any, np.dtype[np.float64]]] FILE: StringIO def func(a: int) -> bool: ... reveal_type(np.deprecate(func)) # E: def (a: builtins.int) -> builtins.bool reveal_type(np.deprecate()) # E: _Deprecate reveal_type(np.deprecate_with_doc("test")) # E: _Deprecate reveal_type(np.deprecate_with_doc(None)) # E: _Deprecate reveal_type(np.byte_bounds(AR)) # E: Tuple[builtins.int, builtins.int] reveal_type(np.byte_bounds(np.float64())) # E: Tuple[builtins.int, builtins.int] reveal_type(np.who(None)) # E: None reveal_type(np.who(AR_DICT)) # E: None reveal_type(np.info(1, output=FILE)) # E: None reveal_type(np.source(np.interp, output=FILE)) # E: None reveal_type(np.lookfor("binary representation", output=FILE)) # E: None reveal_type(np.safe_eval("1 + 1")) # E: Any
def main(): np.info(ff.fft) # <1> print('-' * 60) np.source(ff.fft) # <2>
# ( 52.292984, -183.492294, 1586.229614)] # polygon_coordinates2 = [[ 52.40876 , -183.389725, 1586.93689 ], # [ 52.143188, -183.361359, 1586.970337], # [ 51.883614, -183.387726, 1586.961182], # [ 51.659508, -183.51033 , 1586.876221], # [ 51.502106, -183.61142 , 1586.804932], # [ 51.338387, -183.783966, 1586.678711], # [ 51.181816, -184.001953, 1586.517212], # [ 51.176094, -184.210297, 1586.356445], # [ 51.301521, -184.390747, 1586.21167 ], # [ 51.513306, -184.485138, 1586.129517], # [ 51.759201, -184.515472, 1586.095459], # [ 52.098442, -184.500259, 1586.092529], # [ 52.315491, -184.499954, 1586.083252], # [ 52.619354, -184.382645, 1586.160767], # [ 52.790848, -184.238586, 1586.264526], # [ 52.845612, -184.011871, 1586.437378], # [ 52.805977, -183.746689, 1586.643921], # [ 52.657982, -183.519531, 1586.825806]] # x1 = [i[0] for i in polygon_coordinates1] # y1 = [i[1] for i in polygon_coordinates1] # z1 = [i[2] for i in polygon_coordinates1] # x2 = [i[0] for i in polygon_coordinates2] # y2 = [i[1] for i in polygon_coordinates2] # z2 = [i[2] for i in polygon_coordinates2] # plot3DScatter(x1 + x2, y1 + y2, z1 + z2) contour_point_list = get3DContourPointsList(vessels, 'Left Circumflex Artery') drawSurfacePlt(contour_point_list) (np.source(Axes3D.plot_trisurf))