def unsqueeze(input, dim): return np.unsqueeze(input, dim)
g h = torch.FloatTensor(1,5) h h = nn.Parameter(h) h """#Squeeze ka eg:-""" vinit = [[[[[1,2,3], [5,6,7]]]]] import numpy as np v = np.array(vinit) v v.shape import numpy as np vinit = np.squeeze(vinit) vinit vinit.shape vinit = np.unsqueeze(0)(vinit) vinit vinit.shape """#Idhar tak squeeze"""
train_loss = 0 valid_loss = 0 valid_loss_list, train_loss_list = [], [] for epoch in range(max_epochs): train_loss = 0 valid_loss = 0 for data in train_loader: batch_size = data.size()[0] #print (data.size()) datav = Variable(data).cuda() l1 = random.randint(1, 100) - 1 blb = lesion_generator() temp_img = (datav[l1, :, :, :]) temp_img = np.unsqueeze(temp_img, 0).cpu().numpy() temp_img[blb > 0.1] = blb[blb > 0.1] datav[l1, :, :, :] = torch.from_numpy(temp_img) #datav[l2,:,row2:row2+5,:]=0 mean, logvar, rec_enc = G(datav) if epoch % 5 == 0: beta_err = beta_loss_function(rec_enc, datav, mean, logvar, beta) else: beta_err = beta_loss_function(rec_enc, datav, mean, logvar, 0) err_enc = beta_err opt_enc.zero_grad() err_enc.backward() opt_enc.step() G.eval()