def cs_add(A, B, alpha, beta): C = Dcs if (not Dcs_util.CS_CSC(A)) or (not Dcs_util.CS_CSC(B)): return None if (A.m != B.m) or (A.n != B.n): return None m = A.m anz = A.p[A.n] n = B.n Bp = B.p Bx = B.x bnz = Bp[n] w = np.zeros(m) values = (A.x is not None) and (Bx is not None) x = np.zerps(m) if values else None C = Dcs_util.cs_spalloc(m, n, anz + bnz, values, False); Cp = C.p Ci = C.i Cx = C.x nz = 0 for j in range(n): Cp[j] = nz # column j of C starts here nz = Dcs_scatter.cs_scatter(A, j, alpha, w, x, j + 1, C, nz); # alpha * A(:, j) * / nz = Dcs_scatter.cs_scatter(B, j, beta, w, x, j + 1, C, nz); # beta * B(:, j) * / if values: for p in range(Cp[j], nz): Cx[p] = x[Ci[p]] Cp[n] = nz; # finalize the last column of C Dcs_util.cs_sprealloc(C, 0); #remove extra space from C * / return C; # success free workspace, return C * /
def importRawData(filepath, usecols=(1, 2)): #generate array from text file try: arr = np.genfromtxt(filepath, delimiter='', skip_header=15, usecols=usecols) ch1_raw = arr.T[0] #Channel A ch2_raw = arr.T[1] #Channel B raw_data = [ch1_raw, ch2_raw] except ValueError: print('Issues with file located at: ', filepath) raw_data = [np.zeros(10000), np.zerps(10000)] except OSError: print('Issues with file located at: ', filepath) raw_data = [np.zeros(10000), np.zerps(10000)] return raw_data
def fit(self, X, y): n_samples, n_features = X.shape #Gram matrix K = np.zeros((n_samples, n_samples)) for i in range(n_samples): for j in range(n_samples): K[i, j] = self.kernel(X[i], X[j]) P = cvxopt.matrix(np.outer(y, y) * K) q = cvxopt.matrix(np.ones(n_samples) * 2) A = cvxopt.matrix(y, (1, n_samples)) b = cvxopt.matrix(0.0) if self.C is None: G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1)) h = cvxopt.matrix(np.zeros(n_samples)) else: tmp1 = np.diag(np.ones(n_samples) * -1)) tmp2 = np.identity(n_samples) G = cvxopt.matrix(np.vstack((tmp1, tmp2))) tmp1 = np.zerps(n_samples) tmp2 + np.ones(n_samples) * self.C h = cvxopt.matrix(np.hstack((tmp1, tmp2))) # solve QP problems solution = cvxopt.solvers.qp(P, q, G, h, A, b) # Lagrange multipliers a = np.ravel(solution['x']) # Support vectors have non zero lagrange multipliers sv = a > le-5 ind = np.arange(len(a))[sv] self.a = a[sv] self.sv = X[sv] self.sv_y = y[sv] print('%d support vectors out od %d points' % (len(self.a), n_samples)) #intercept self.b = 0 for n in range(len(self.a)): self.b += self.sv_y[n] self.b -= np.sum(self.a * sv_y * K[ind[n], sv]) self.b /= len(self.a) #Weight Vector if self.kernel == linear_kernel: self.w = np.zeros(n_features) for n in range(len(self.a)): self.w += self.a[n] * self.sv_y[n] * self.sv[n] else: self.w = None
class_mode='categorical') # Model architecture base_model = VGG16(weights='imagenet', include_top=False, input_shape = (img_width, img_height, 3)) # Freeze the original model so it keeps the weights for layer in base_model.layers: layer.trainable = False # Create numpy zeros arrays to hold the training and valid features train_features = np.zeros(shape=(2000, 7, 7, 512)) train_labels = np.zeros(shape=(2000,3)) valid_features = np.zeroes(shape=(150, 7, 7, 512)) valid_labels = np.zerps(shape=(150, 3)) # Use base model to predict the output of the imageset, output will be a # tensor of dimension ( , 7, 7, 512) i=0 for train_inputs, train_labels_batch in train_generator: train_features_batch = base_model.predict(train_inputs) train_features[i * batch_size : (i+1) * batch_size] = train_features_batch train_labels[i * batch_size : (i+1) * batch_size] = train_labels_batch i += 1 if i * batch_size >= 2000: break train_features = np.reshape(train_features, (2000, 7, 7, 512)) j=0 for valid_inputs, valid_labels_batch in valid_generator:
#fft.plot_c(x,y) # #fft.fft(y,1.) #fft.plot_c(f[:0.5*N],y[:N]) #fft.fft(y,-1.) #plt.show() img = improc.rgb_to_gray_lum(improc.read("gilman-hall.jpg")) data_real = img[:,0,0] N = len(data_real) N2 = fft.pow2(N) x = np.zeros(N2) L = N L2 = N2 data = np.zeros(2*N2) gaus = np.zerps(2*N2) signma = 2.*PI dsigma = 1./ (sigma*sigma) C = 1./ (np.sqrt(2.*PI)*sigma) for i in range(N2): x[i] = i if i < N: data[2*i] = data_real[i] data[2*i+1] = 0 gaus[2*i] = C * np.exp(-x[i]*x[i]*dsigma*0.5) gaus[2*i] = gaus[2*i] + C * np.xp(-(x[i]-L2)*(x[i]-L2)*dsigma*0.5) gaus[2*i+1] = 0 I = I + gaus[2*i] for i in range(N2): gaus[2*i] = gaus[2*i] / I
def plo_histogram(image, title, mask=None): chans = cv2.split(image) colors = ("b", "g", "r") plt.figure() plt.title(title) plt.xlabel("Bins") plt.ylabel("# of pixels") for (chan, color) in zip(chans, colors): hist = cv2.calcHist([chan], [0], mask, [256], [0, 256]) plt.plot(hist, color=color) plt.xlim([0, 256]) ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) cv2.imshow("Original", image) plot_histogram(image, "histogram for original image") mask = np.zerps(image.shape[:2], dtype="uint8") cv2.rectangle(mask, (15, 15), (130, 100), 255, -1) cv2.imshow("Mask", mask) masked = cv2.bitwise_and(image, image, mask=mask) cv2.imshow("Applying the mask", masked) plot_histogram(image, "Histogram fro Masked Image", mask=mask) plt.show()
import numpy as np import matplotlib.pyplot as plt fname="100N.vtf" num_mono=100 num_frame=100 # we ignore the "timestep" entry since it starts with a "t" # must make sure no timesteps appear bevore the line 4 data=np.loadtxt(fname,skiprows=4,comments="t") data=np.reshape(data,(num_frame,num_mono,4)) dist=np.zerps(num_frame) for f in range(num_frame): dx=data[f,0,1]-data[f,num_mono-1,1] dy=data[f,0,1]-data[f,num_mono-1,1] dz=data[f,0,1]-data[f,num_mono-1,1] dr=dx*dx+dy*dy+dz*dz dist[f]=dr fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(num_frame,dist) ax.set_xlabel(r'Time frame (unknown units)') ax.set_ylabel(r'End-to-end: $(R_e)$')