def test_polyvander(self): # check for 1d x x = np.arange(3) v = poly.polyvander(x, 3) assert_(v.shape == (3, 4)) for i in range(4): coef = [0] * i + [1] assert_almost_equal(v[..., i], poly.polyval(x, coef)) # check for 2d x x = np.array([[1, 2], [3, 4], [5, 6]]) v = poly.polyvander(x, 3) assert_(v.shape == (3, 2, 4)) for i in range(4): coef = [0] * i + [1] assert_almost_equal(v[..., i], poly.polyval(x, coef))
def test_lagval(self): #check empty input assert_equal(lag.lagval([], [1]).size, 0) #check normal input) x = np.linspace(-1, 1) y = [polyval(x, c) for c in Llist] for i in range(7): msg = "At i=%d" % i tgt = y[i] res = lag.lagval(x, [0] * i + [1]) assert_almost_equal(res, tgt, err_msg=msg) #check that shape is preserved for i in range(3): dims = [2] * i x = np.zeros(dims) assert_equal(lag.lagval(x, [1]).shape, dims) assert_equal(lag.lagval(x, [1, 0]).shape, dims) assert_equal(lag.lagval(x, [1, 0, 0]).shape, dims)
def test_polyval(self): #check empty input assert_equal(poly.polyval([], [1]).size, 0) #check normal input) x = np.linspace(-1, 1) y = [x**i for i in range(5)] for i in range(5): tgt = y[i] res = poly.polyval(x, [0] * i + [1]) assert_almost_equal(res, tgt) tgt = x * (x**2 - 1) res = poly.polyval(x, [0, -1, 0, 1]) assert_almost_equal(res, tgt) #check that shape is preserved for i in range(3): dims = [2] * i x = np.zeros(dims) assert_equal(poly.polyval(x, [1]).shape, dims) assert_equal(poly.polyval(x, [1, 0]).shape, dims) assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims)
class TestEvaluation(object): # coefficients of 1 + 2*x + 3*x**2 c1d = np.array([9., -14., 6.]) c2d = np.einsum('i,j->ij', c1d, c1d) c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) # some random values in [-1, 1) x = np.random.random((3, 5)) * 2 - 1 y = polyval(x, [1., 2., 3.]) def test_lagval(self): #check empty input assert_equal(lag.lagval([], [1]).size, 0) #check normal input) x = np.linspace(-1, 1) y = [polyval(x, c) for c in Llist] for i in range(7): msg = "At i=%d" % i tgt = y[i] res = lag.lagval(x, [0] * i + [1]) assert_almost_equal(res, tgt, err_msg=msg) #check that shape is preserved for i in range(3): dims = [2] * i x = np.zeros(dims) assert_equal(lag.lagval(x, [1]).shape, dims) assert_equal(lag.lagval(x, [1, 0]).shape, dims) assert_equal(lag.lagval(x, [1, 0, 0]).shape, dims) def test_lagval2d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test exceptions assert_raises(ValueError, lag.lagval2d, x1, x2[:2], self.c2d) #test values tgt = y1 * y2 res = lag.lagval2d(x1, x2, self.c2d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = lag.lagval2d(z, z, self.c2d) assert_(res.shape == (2, 3)) def test_lagval3d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test exceptions assert_raises(ValueError, lag.lagval3d, x1, x2, x3[:2], self.c3d) #test values tgt = y1 * y2 * y3 res = lag.lagval3d(x1, x2, x3, self.c3d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = lag.lagval3d(z, z, z, self.c3d) assert_(res.shape == (2, 3)) def test_laggrid2d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test values tgt = np.einsum('i,j->ij', y1, y2) res = lag.laggrid2d(x1, x2, self.c2d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = lag.laggrid2d(z, z, self.c2d) assert_(res.shape == (2, 3) * 2) def test_laggrid3d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test values tgt = np.einsum('i,j,k->ijk', y1, y2, y3) res = lag.laggrid3d(x1, x2, x3, self.c3d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = lag.laggrid3d(z, z, z, self.c3d) assert_(res.shape == (2, 3) * 3)
def test_polyfit(self): def f(x): return x * (x - 1) * (x - 2) def f2(x): return x**4 + x**2 + 1 # Test exceptions assert_raises(ValueError, poly.polyfit, [1], [1], -1) assert_raises(TypeError, poly.polyfit, [[1]], [1], 0) assert_raises(TypeError, poly.polyfit, [], [1], 0) assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0) assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0) assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0) assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]]) assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1]) assert_raises(ValueError, poly.polyfit, [1], [1], [ -1, ]) assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6]) assert_raises(TypeError, poly.polyfit, [1], [1], []) # Test fit x = np.linspace(0, 2) y = f(x) # coef3 = poly.polyfit(x, y, 3) assert_equal(len(coef3), 4) assert_almost_equal(poly.polyval(x, coef3), y) coef3 = poly.polyfit(x, y, [0, 1, 2, 3]) assert_equal(len(coef3), 4) assert_almost_equal(poly.polyval(x, coef3), y) # coef4 = poly.polyfit(x, y, 4) assert_equal(len(coef4), 5) assert_almost_equal(poly.polyval(x, coef4), y) coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4]) assert_equal(len(coef4), 5) assert_almost_equal(poly.polyval(x, coef4), y) # coef2d = poly.polyfit(x, np.array([y, y]).T, 3) assert_almost_equal(coef2d, np.array([coef3, coef3]).T) coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3]) assert_almost_equal(coef2d, np.array([coef3, coef3]).T) # test weighting w = np.zeros_like(x) yw = y.copy() w[1::2] = 1 yw[0::2] = 0 wcoef3 = poly.polyfit(x, yw, 3, w=w) assert_almost_equal(wcoef3, coef3) wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w) assert_almost_equal(wcoef3, coef3) # wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w) assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) # test scaling with complex values x points whose square # is zero when summed. x = [1, 1j, -1, -1j] assert_almost_equal(poly.polyfit(x, x, 1), [0, 1]) assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1]) # test fitting only even Polyendre polynomials x = np.linspace(-1, 1) y = f2(x) coef1 = poly.polyfit(x, y, 4) assert_almost_equal(poly.polyval(x, coef1), y) coef2 = poly.polyfit(x, y, [0, 2, 4]) assert_almost_equal(poly.polyval(x, coef2), y) assert_almost_equal(coef1, coef2)
def test_polyint(self): # check exceptions assert_raises(ValueError, poly.polyint, [0], .5) assert_raises(ValueError, poly.polyint, [0], -1) assert_raises(ValueError, poly.polyint, [0], 1, [0, 0]) assert_raises(ValueError, poly.polyint, [0], lbnd=[0]) assert_raises(ValueError, poly.polyint, [0], scl=[0]) assert_raises(ValueError, poly.polyint, [0], axis=.5) # test integration of zero polynomial for i in range(2, 5): k = [0] * (i - 2) + [1] res = poly.polyint([0], m=i, k=k) assert_almost_equal(res, [0, 1]) # check single integration with integration constant for i in range(5): scl = i + 1 pol = [0] * i + [1] tgt = [i] + [0] * i + [1 / scl] res = poly.polyint(pol, m=1, k=[i]) assert_almost_equal(trim(res), trim(tgt)) # check single integration with integration constant and lbnd for i in range(5): scl = i + 1 pol = [0] * i + [1] res = poly.polyint(pol, m=1, k=[i], lbnd=-1) assert_almost_equal(poly.polyval(-1, res), i) # check single integration with integration constant and scaling for i in range(5): scl = i + 1 pol = [0] * i + [1] tgt = [i] + [0] * i + [2 / scl] res = poly.polyint(pol, m=1, k=[i], scl=2) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with default k for i in range(5): for j in range(2, 5): pol = [0] * i + [1] tgt = pol[:] for k in range(j): tgt = poly.polyint(tgt, m=1) res = poly.polyint(pol, m=j) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with defined k for i in range(5): for j in range(2, 5): pol = [0] * i + [1] tgt = pol[:] for k in range(j): tgt = poly.polyint(tgt, m=1, k=[k]) res = poly.polyint(pol, m=j, k=list(range(j))) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with lbnd for i in range(5): for j in range(2, 5): pol = [0] * i + [1] tgt = pol[:] for k in range(j): tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1) res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with scaling for i in range(5): for j in range(2, 5): pol = [0] * i + [1] tgt = pol[:] for k in range(j): tgt = poly.polyint(tgt, m=1, k=[k], scl=2) res = poly.polyint(pol, m=j, k=list(range(j)), scl=2) assert_almost_equal(trim(res), trim(tgt))
def test_polyvalfromroots(self): # check exception for broadcasting x values over root array with # too few dimensions assert_raises(ValueError, poly.polyvalfromroots, [1], [1], tensor=False) # check empty input assert_equal(poly.polyvalfromroots([], [1]).size, 0) assert_(poly.polyvalfromroots([], [1]).shape == (0, )) # check empty input + multidimensional roots assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0) assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0)) # check scalar input assert_equal(poly.polyvalfromroots(1, 1), 0) assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3, )) # check normal input) x = np.linspace(-1, 1) y = [x**i for i in range(5)] for i in range(1, 5): tgt = y[i] res = poly.polyvalfromroots(x, [0] * i) assert_almost_equal(res, tgt) tgt = x * (x - 1) * (x + 1) res = poly.polyvalfromroots(x, [-1, 0, 1]) assert_almost_equal(res, tgt) # check that shape is preserved for i in range(3): dims = [2] * i x = np.zeros(dims) assert_equal(poly.polyvalfromroots(x, [1]).shape, dims) assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims) assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims) # check compatibility with factorization ptest = [15, 2, -16, -2, 1] r = poly.polyroots(ptest) x = np.linspace(-1, 1) assert_almost_equal(poly.polyval(x, ptest), poly.polyvalfromroots(x, r)) # check multidimensional arrays of roots and values # check tensor=False rshape = (3, 5) x = np.arange(-3, 2) r = np.random.randint(-5, 5, size=rshape) res = poly.polyvalfromroots(x, r, tensor=False) tgt = np.empty(r.shape[1:]) for ii in range(tgt.size): tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii]) assert_equal(res, tgt) # check tensor=True x = np.vstack([x, 2 * x]) res = poly.polyvalfromroots(x, r, tensor=True) tgt = np.empty(r.shape[1:] + x.shape) for ii in range(r.shape[1]): for jj in range(x.shape[0]): tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii]) assert_equal(res, tgt)
class TestEvaluation(object): # coefficients of 1 + 2*x + 3*x**2 c1d = np.array([1., 2., 3.]) c2d = np.einsum('i,j->ij', c1d, c1d) c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) # some random values in [-1, 1) x = np.random.random((3, 5)) * 2 - 1 y = poly.polyval(x, [1., 2., 3.]) def test_polyval(self): #check empty input assert_equal(poly.polyval([], [1]).size, 0) #check normal input) x = np.linspace(-1, 1) y = [x**i for i in range(5)] for i in range(5): tgt = y[i] res = poly.polyval(x, [0] * i + [1]) assert_almost_equal(res, tgt) tgt = x * (x**2 - 1) res = poly.polyval(x, [0, -1, 0, 1]) assert_almost_equal(res, tgt) #check that shape is preserved for i in range(3): dims = [2] * i x = np.zeros(dims) assert_equal(poly.polyval(x, [1]).shape, dims) assert_equal(poly.polyval(x, [1, 0]).shape, dims) assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims) def test_polyvalfromroots(self): # check exception for broadcasting x values over root array with # too few dimensions assert_raises(ValueError, poly.polyvalfromroots, [1], [1], tensor=False) # check empty input assert_equal(poly.polyvalfromroots([], [1]).size, 0) assert_(poly.polyvalfromroots([], [1]).shape == (0, )) # check empty input + multidimensional roots assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0) assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0)) # check scalar input assert_equal(poly.polyvalfromroots(1, 1), 0) assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3, )) # check normal input) x = np.linspace(-1, 1) y = [x**i for i in range(5)] for i in range(1, 5): tgt = y[i] res = poly.polyvalfromroots(x, [0] * i) assert_almost_equal(res, tgt) tgt = x * (x - 1) * (x + 1) res = poly.polyvalfromroots(x, [-1, 0, 1]) assert_almost_equal(res, tgt) # check that shape is preserved for i in range(3): dims = [2] * i x = np.zeros(dims) assert_equal(poly.polyvalfromroots(x, [1]).shape, dims) assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims) assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims) # check compatibility with factorization ptest = [15, 2, -16, -2, 1] r = poly.polyroots(ptest) x = np.linspace(-1, 1) assert_almost_equal(poly.polyval(x, ptest), poly.polyvalfromroots(x, r)) # check multidimensional arrays of roots and values # check tensor=False rshape = (3, 5) x = np.arange(-3, 2) r = np.random.randint(-5, 5, size=rshape) res = poly.polyvalfromroots(x, r, tensor=False) tgt = np.empty(r.shape[1:]) for ii in range(tgt.size): tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii]) assert_equal(res, tgt) # check tensor=True x = np.vstack([x, 2 * x]) res = poly.polyvalfromroots(x, r, tensor=True) tgt = np.empty(r.shape[1:] + x.shape) for ii in range(r.shape[1]): for jj in range(x.shape[0]): tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii]) assert_equal(res, tgt) def test_polyval2d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test exceptions assert_raises(ValueError, poly.polyval2d, x1, x2[:2], self.c2d) #test values tgt = y1 * y2 res = poly.polyval2d(x1, x2, self.c2d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = poly.polyval2d(z, z, self.c2d) assert_(res.shape == (2, 3)) def test_polyval3d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test exceptions assert_raises(ValueError, poly.polyval3d, x1, x2, x3[:2], self.c3d) #test values tgt = y1 * y2 * y3 res = poly.polyval3d(x1, x2, x3, self.c3d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = poly.polyval3d(z, z, z, self.c3d) assert_(res.shape == (2, 3)) def test_polygrid2d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test values tgt = np.einsum('i,j->ij', y1, y2) res = poly.polygrid2d(x1, x2, self.c2d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = poly.polygrid2d(z, z, self.c2d) assert_(res.shape == (2, 3) * 2) def test_polygrid3d(self): x1, x2, x3 = self.x y1, y2, y3 = self.y #test values tgt = np.einsum('i,j,k->ijk', y1, y2, y3) res = poly.polygrid3d(x1, x2, x3, self.c3d) assert_almost_equal(res, tgt) #test shape z = np.ones((2, 3)) res = poly.polygrid3d(z, z, z, self.c3d) assert_(res.shape == (2, 3) * 3)