def matmul(a, b, no_blas=False): """ Matrix multiplication of two 2-D arrays. Parameters ---------- a : array_like First argument. b : array_like Second argument. Returns ------- output : ndarray Returns the matrix multiplication of `a` and `b`. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- dot : Dot product of two arrays. Examples -------- >>> np.matmul(np.array([[1,2],[3,4]]),np.array([[5,6],[7,8]])) array([[19, 22], [43, 50]]) """ if not dtype_equal(a, b): raise ValueError("Input must be of same type") if a.ndim != 2 and b.ndim != 2: raise ValueError("Input must be 2-D.") if not (bhary.check(a) or bhary.check(b)): # Both are regular numpy arrays return numpy.dot(a, b) else: a = array_create.array(a) b = array_create.array(b) # If the dtypes are both float, we can use BLAS to calculate # the dot-product, if BLAS is present. if not no_blas and a.dtype.kind in np.typecodes[ "AllFloat"] and b.dtype.kind in np.typecodes["AllFloat"]: try: return blas.gemm(a, b) except: pass return ufuncs.add.reduce(a[:, numpy.newaxis] * numpy.transpose(b), -1)
def matmul(a, b, no_blas=False): """ Matrix multiplication of two 2-D arrays. Parameters ---------- a : array_like First argument. b : array_like Second argument. Returns ------- output : ndarray Returns the matrix multiplication of `a` and `b`. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- dot : Dot product of two arrays. Examples -------- >>> np.matmul(np.array([[1,2],[3,4]]),np.array([[5,6],[7,8]])) array([[19, 22], [43, 50]]) """ if not dtype_equal(a, b): raise ValueError("Input must be of same type") if a.ndim != 2 and b.ndim != 2: raise ValueError("Input must be 2-D.") if not (bhary.check(a) or bhary.check(b)): # Both are regular numpy arrays return numpy.dot(a, b) else: a = array_create.array(a) b = array_create.array(b) # If the dtypes are both float, we can use BLAS to calculate # the dot-product, if BLAS is present. if not no_blas and a.dtype.kind in np.typecodes["AllFloat"] and b.dtype.kind in np.typecodes["AllFloat"]: try: return blas.gemm(a, b) except: pass return ufuncs.add.reduce(a[:, numpy.newaxis] * numpy.transpose(b), -1)
def flatten(ary, order='C', always_copy=True): """ Return a copy of the array collapsed into one dimension. Parameters ---------- ary : array_like Array from which to retrieve the flattened data from. order : {'C', 'F', 'A', 'K'}, optional 'C' means to flatten in row-major (C-style) order. 'F' means to flatten in column-major (Fortran- style) order. 'A' means to flatten in column-major order if `a` is Fortran *contiguous* in memory, row-major order otherwise. 'K' means to flatten `a` in the order the elements occur in memory. The default is 'C'. always_copy : boolean When False, a copy is only made when necessary Returns ------- y : ndarray A copy of the input array, flattened to one dimension. Notes ----- The order of the data in memory is always row-major (C-style). Examples -------- >>> a = np.array([[1,2], [3,4]]) >>> np.flatten(a) array([1, 2, 3, 4]) """ if order == 'F' or (order == 'A' and not ary.flags['F_CONTIGUOUS']): ary = numpy.transpose(ary) ret = ary.reshape(_util.totalsize(ary)) if always_copy: return ret.copy() else: return ret
def dot(a,b, no_matmul=False): """ Dot product of two arrays. For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of `a` and the second-to-last of `b`:: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) Parameters ---------- a : array_like First argument. b : array_like Second argument. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. Examples -------- >>> np.dot(3, 4) 12 Neither argument is complex-conjugated: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) For 2-D arrays it's the matrix product: >>> a = [[1, 0], [0, 1]] >>> b = [[4, 1], [2, 2]] >>> np.dot(a, b) array([[4, 1], [2, 2]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) >>> np.dot(a, b)[2,3,2,1,2,2] 499128 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 499128 """ if ndarray.check(a) or ndarray.check(b): a = array_create.array(a) b = array_create.array(b) if b.ndim == 1: return ufunc.add.reduce(a*b,-1) if a.ndim == 1: return ufunc.add.reduce(a*numpy.transpose(b),-1) if (not no_matmul) and a.ndim == 2 and b.ndim == 2: return matmul(a,b) return ufunc.add.reduce(a[:,numpy.newaxis]*numpy.transpose(b),-1)
def dot(a, b, no_blas=False): """ Dot product of two arrays. For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of `a` and the second-to-last of `b`:: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) Parameters ---------- a : array_like First argument. b : array_like Second argument. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. Examples -------- >>> np.dot(3, 4) 12 Neither argument is complex-conjugated: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) For 2-D arrays it's the matrix product: >>> a = [[1, 0], [0, 1]] >>> b = [[4, 1], [2, 2]] >>> np.dot(a, b) array([[4, 1], [2, 2]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) >>> np.dot(a, b)[2,3,2,1,2,2] 499128 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 499128 """ if not (bhary.check(a) or bhary.check(b)): # Both are regular numpy arrays return numpy.dot(a, b) else: a = array_create.array(a) b = array_create.array(b) if b.ndim == 1: return ufuncs.add.reduce(a * b, -1) if a.ndim == 1: return ufuncs.add.reduce(a * numpy.transpose(b), -1) if not no_blas and a.ndim == 2 and b.ndim == 2: # If the dtypes are both float, we can use BLAS to calculate # the dot-product, if BLAS is present. if a.dtype.kind in np.typecodes[ "AllFloat"] and b.dtype.kind in np.typecodes["AllFloat"]: try: return blas.gemm(a, b) except: pass return ufuncs.add.reduce(a[:, numpy.newaxis] * numpy.transpose(b), -1)