コード例 #1
0
ファイル: temporal_memory.py プロジェクト: wjenkins3/nupic
    def _growSynapses(cls, connections, random, segment, nDesiredNewSynapes,
                      prevWinnerCells, initialPermanence):
        """
    Creates nDesiredNewSynapes synapses on the segment passed in if
    possible, choosing random cells from the previous winner cells that are
    not already on the segment.

    @param  connections        (Object) Connections instance for the tm
    @param  random             (Object) TM object used to generate random
                                        numbers
    @param  segment            (int)    Segment to grow synapses on.
    @params nDesiredNewSynapes (int)    Desired number of synapses to grow
    @params prevWinnerCells    (list)   Winner cells in `t-1`
    @param  initialPermanence  (float)  Initial permanence of a new synapse.

    """
        candidates = list(prevWinnerCells)

        for synapse in connections.synapsesForSegment(segment):
            i = binSearch(candidates, synapse.presynapticCell)
            if i != -1:
                del candidates[i]

        nActual = min(nDesiredNewSynapes, len(candidates))

        for _ in range(nActual):
            i = random.getUInt32(len(candidates))
            connections.createSynapse(segment, candidates[i],
                                      initialPermanence)
            del candidates[i]
コード例 #2
0
ファイル: temporal_memory.py プロジェクト: mrcslws/nupic
  def _growSynapses(cls, connections, random, segment, nDesiredNewSynapes,
                    prevWinnerCells, initialPermanence):
    """
    Creates nDesiredNewSynapes synapses on the segment passed in if
    possible, choosing random cells from the previous winner cells that are
    not already on the segment.

    @param  connections        (Object) Connections instance for the tm
    @param  random             (Object) TM object used to generate random
                                        numbers
    @param  segment            (int)    Segment to grow synapses on.
    @params nDesiredNewSynapes (int)    Desired number of synapses to grow
    @params prevWinnerCells    (list)   Winner cells in `t-1`
    @param  initialPermanence  (float)  Initial permanence of a new synapse.

    """
    candidates = list(prevWinnerCells)

    for synapse in connections.synapsesForSegment(segment):
      i = binSearch(candidates, synapse.presynapticCell)
      if i != -1:
        del candidates[i]

    nActual = min(nDesiredNewSynapes, len(candidates))

    for _ in range(nActual):
      i = random.getUInt32(len(candidates))
      connections.createSynapse(segment, candidates[i], initialPermanence)
      del candidates[i]
コード例 #3
0
    def _growSynapses(cls, connections, random, segment, nDesiredNewSynapes,
                      prevWinnerCells, initialPermanence,
                      maxSynapsesPerSegment):
        """
    Creates nDesiredNewSynapes synapses on the segment passed in if
    possible, choosing random cells from the previous winner cells that are
    not already on the segment.

    :param connections:        (Object) Connections instance for the tm
    :param random:             (Object) TM object used to generate random
                                        numbers
    :param segment:            (int)    Segment to grow synapses on.
    :param nDesiredNewSynapes: (int)    Desired number of synapses to grow
    :param prevWinnerCells:    (list)   Winner cells in `t-1`
    :param initialPermanence:  (float)  Initial permanence of a new synapse.

    """
        candidates = list(prevWinnerCells)

        for synapse in connections.synapsesForSegment(segment):
            i = binSearch(candidates, synapse.presynapticCell)
            if i != -1:
                del candidates[i]

        nActual = min(nDesiredNewSynapes, len(candidates))

        # Check if we're going to surpass the maximum number of synapses.
        overrun = connections.numSynapses(
            segment) + nActual - maxSynapsesPerSegment
        if overrun > 0:
            cls._destroyMinPermanenceSynapses(connections, random, segment,
                                              overrun, prevWinnerCells)

        # Recalculate in case we weren't able to destroy as many synapses as needed.
        nActual = min(nActual,
                      maxSynapsesPerSegment - connections.numSynapses(segment))

        for _ in range(nActual):
            i = random.getUInt32(len(candidates))
            connections.createSynapse(segment, candidates[i],
                                      initialPermanence)
            del candidates[i]
コード例 #4
0
ファイル: temporal_memory.py プロジェクト: alfonsokim/nupic
  def _growSynapses(cls, connections, random, segment, nDesiredNewSynapes,
                    prevWinnerCells, initialPermanence, maxSynapsesPerSegment):
    """
    Creates nDesiredNewSynapes synapses on the segment passed in if
    possible, choosing random cells from the previous winner cells that are
    not already on the segment.

    :param connections:        (Object) Connections instance for the tm
    :param random:             (Object) TM object used to generate random
                                        numbers
    :param segment:            (int)    Segment to grow synapses on.
    :param nDesiredNewSynapes: (int)    Desired number of synapses to grow
    :param prevWinnerCells:    (list)   Winner cells in `t-1`
    :param initialPermanence:  (float)  Initial permanence of a new synapse.

    """
    candidates = list(prevWinnerCells)

    for synapse in connections.synapsesForSegment(segment):
      i = binSearch(candidates, synapse.presynapticCell)
      if i != -1:
        del candidates[i]

    nActual = min(nDesiredNewSynapes, len(candidates))

    # Check if we're going to surpass the maximum number of synapses.
    overrun = connections.numSynapses(segment) + nActual - maxSynapsesPerSegment
    if overrun > 0:
      cls._destroyMinPermanenceSynapses(connections, random, segment, overrun,
                                        prevWinnerCells)

    # Recalculate in case we weren't able to destroy as many synapses as needed.
    nActual = min(nActual,
                  maxSynapsesPerSegment - connections.numSynapses(segment))

    for _ in range(nActual):
      i = random.getUInt32(len(candidates))
      connections.createSynapse(segment, candidates[i], initialPermanence)
      del candidates[i]
コード例 #5
0
    def _adaptSegment(cls, connections, segment, prevActiveCells,
                      permanenceIncrement, permanenceDecrement):
        """
    Updates synapses on segment.
    Strengthens active synapses; weakens inactive synapses.

    :param connections:          (Object) Connections instance for the tm
    :param segment:              (int)    Segment to adapt
    :param prevActiveCells:      (list)   Active cells in `t-1`
    :param permanenceIncrement:  (float)  Amount to increment active synapses
    :param permanenceDecrement:  (float)  Amount to decrement inactive synapses
    """

        # Destroying a synapse modifies the set that we're iterating through.
        synapsesToDestroy = []

        for synapse in connections.synapsesForSegment(segment):
            permanence = synapse.permanence

            if binSearch(prevActiveCells, synapse.presynapticCell) != -1:
                permanence += permanenceIncrement
            else:
                permanence -= permanenceDecrement

            # Keep permanence within min/max bounds
            permanence = max(0.0, min(1.0, permanence))

            if permanence < EPSILON:
                synapsesToDestroy.append(synapse)
            else:
                connections.updateSynapsePermanence(synapse, permanence)

        for synapse in synapsesToDestroy:
            connections.destroySynapse(synapse)

        if connections.numSynapses(segment) == 0:
            connections.destroySegment(segment)
コード例 #6
0
ファイル: temporal_memory.py プロジェクト: alfonsokim/nupic
  def _adaptSegment(cls, connections, segment, prevActiveCells,
                    permanenceIncrement, permanenceDecrement):
    """
    Updates synapses on segment.
    Strengthens active synapses; weakens inactive synapses.

    :param connections:          (Object) Connections instance for the tm
    :param segment:              (int)    Segment to adapt
    :param prevActiveCells:      (list)   Active cells in `t-1`
    :param permanenceIncrement:  (float)  Amount to increment active synapses
    :param permanenceDecrement:  (float)  Amount to decrement inactive synapses
    """

    # Destroying a synapse modifies the set that we're iterating through.
    synapsesToDestroy = []

    for synapse in connections.synapsesForSegment(segment):
      permanence = synapse.permanence

      if binSearch(prevActiveCells, synapse.presynapticCell) != -1:
        permanence += permanenceIncrement
      else:
        permanence -= permanenceDecrement

      # Keep permanence within min/max bounds
      permanence = max(0.0, min(1.0, permanence))

      if permanence < EPSILON:
        synapsesToDestroy.append(synapse)
      else:
        connections.updateSynapsePermanence(synapse, permanence)

    for synapse in synapsesToDestroy:
      connections.destroySynapse(synapse)

    if connections.numSynapses(segment) == 0:
      connections.destroySegment(segment)