コード例 #1
0
    def testSetFieldStats(self):
        """Test setting the min and max using setFieldStats"""
        def _dumpParams(enc):
            return (enc.n, enc.w, enc.minval, enc.maxval, enc.resolution,
                    enc._learningEnabled, enc.recordNum, enc.radius,
                    enc.rangeInternal, enc.padding, enc.nInternal)

        sfs = AdaptiveScalarEncoder(name='scalar',
                                    n=14,
                                    w=5,
                                    minval=1,
                                    maxval=10,
                                    periodic=False,
                                    forced=True)
        reg = AdaptiveScalarEncoder(name='scalar',
                                    n=14,
                                    w=5,
                                    minval=1,
                                    maxval=100,
                                    periodic=False,
                                    forced=True)
        self.assertNotEqual(
            _dumpParams(sfs), _dumpParams(reg),
            ("Params should not be equal, since the two encoders "
             "were instantiated with different values."))
        # set the min and the max using sFS to 1,100 respectively.
        sfs.setFieldStats("this", {"this": {"min": 1, "max": 100}})

        #Now the parameters for both should be the same
        self.assertEqual(_dumpParams(sfs), _dumpParams(reg),
                         ("Params should now be equal, but they are not. sFS "
                          "should be equivalent to initialization."))
コード例 #2
0
ファイル: adaptivescalar_test.py プロジェクト: hoploop/nupic3
 def testMissingValues(self):
   """missing values"""
   # forced: it's strongly recommended to use w>=21, in the example we force
   # skip the check for readib.
   mv = AdaptiveScalarEncoder(name="mv", n=14, w=3, minval=1, maxval=8,
                              periodic=False, forced=True)
   empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
   self.assertEqual(empty.sum(), 0)
コード例 #3
0
 def setUp(self):
     # forced: it's strongly recommended to use w>=21, in the example we force
     # skip the check for readibility
     self._l = AdaptiveScalarEncoder(name="scalar",
                                     n=14,
                                     w=5,
                                     minval=1,
                                     maxval=10,
                                     periodic=False,
                                     forced=True)
コード例 #4
0
ファイル: adaptivescalar_test.py プロジェクト: hoploop/nupic3
  def testNonPeriodicEncoderMinMaxNotSpec(self):
    """Non-periodic encoder, min and max not specified"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=None,
                              maxval=None, periodic=False, forced=True)

    def _verify(v, encoded, expV=None):
      if expV is None:
        expV = v

      self.assertTrue(numpy.array_equal(
        l.encode(v),
        numpy.array(encoded, dtype=defaultDtype)))
      self.assertLessEqual(
        abs(l.getBucketInfo(l.getBucketIndices(v))[0].value - expV),
        l.resolution/2)

    def _verifyNot(v, encoded):
      self.assertFalse(numpy.array_equal(
        l.encode(v), numpy.array(encoded, dtype=defaultDtype)))

    _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(2, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(3, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
    _verify(-9, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-8, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-7, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-6, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-5, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
    _verify(0, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
    _verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
    _verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(11, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(12, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(13, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(14, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(15, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])


    #"""Test switching learning off"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1, maxval=10,
                              periodic=False, forced=True)
    _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(10, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])

    l.setLearning(False)
    _verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], expV=20)
    _verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)
    _verify(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)

    l.setLearning(True)
    _verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verifyNot(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verifyNot(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
コード例 #5
0
  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity, forced=forced)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None
コード例 #6
0
ファイル: adaptivescalar_test.py プロジェクト: Erichy94/nupic
  def testSetFieldStats(self):
    """Test setting the min and max using setFieldStats"""
    def _dumpParams(enc):
      return (enc.n, enc.w, enc.minval, enc.maxval, enc.resolution,
              enc._learningEnabled, enc.recordNum,
              enc.radius, enc.rangeInternal, enc.padding, enc.nInternal)
    sfs = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=10,
                              periodic=False, forced=True)
    reg = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=100,
                              periodic=False, forced=True)
    self.assertNotEqual(_dumpParams(sfs), _dumpParams(reg),
                        ("Params should not be equal, since the two encoders "
                         "were instantiated with different values."))
    # set the min and the max using sFS to 1,100 respectively.
    sfs.setFieldStats("this", {"this":{"min":1, "max":100}})

    #Now the parameters for both should be the same
    self.assertEqual(_dumpParams(sfs), _dumpParams(reg),
                     ("Params should now be equal, but they are not. sFS "
                      "should be equivalent to initialization."))
コード例 #7
0
 def read(cls, proto):
     encoder = object.__new__(cls)
     encoder.width = proto.width
     encoder.name = proto.name or None
     encoder.n = proto.n
     encoder._adaptiveScalarEnc = (AdaptiveScalarEncoder.read(
         proto.adaptiveScalarEnc))
     encoder._prevAbsolute = proto.prevAbsolute
     encoder._prevDelta = proto.prevDelta
     encoder._stateLock = proto.stateLock
     return encoder
コード例 #8
0
ファイル: delta.py プロジェクト: Erichy94/nupic
 def read(cls, proto):
   encoder = object.__new__(cls)
   encoder.width = proto.width
   encoder.name = proto.name or None
   encoder.n = proto.n
   encoder._adaptiveScalarEnc = (
     AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
   )
   encoder._prevAbsolute = proto.prevAbsolute
   encoder._prevDelta = proto.prevDelta
   encoder._stateLock = proto.stateLock
   return encoder
コード例 #9
0
ファイル: scalar_space.py プロジェクト: mrcslws/nupic
  def __new__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
              resolution=0, name=None, verbosity=0, clipInput=False,
              space="absolute", forced=False):
    self._encoder = None

    if space == "absolute":
      ret = AdaptiveScalarEncoder(w, minval, maxval, periodic, n, radius,
                                  resolution, name, verbosity, clipInput,
                                  forced=forced)
    else:
      ret = DeltaEncoder(w, minval, maxval, periodic, n, radius, resolution,
                         name, verbosity, clipInput, forced=forced)
    return ret
コード例 #10
0
 def read(cls, proto):
   encoder = object.__new__(cls)
   encoder.width = proto.width
   encoder.name = proto.name or None
   encoder.n = proto.n
   encoder._adaptiveScalarEnc = (
     AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
   )
   encoder._prevAbsolute = None if proto.prevAbsolute == 0 else proto.prevAbsolute
   encoder._prevDelta = None if proto.prevDelta == 0 else proto.prevDelta
   encoder._stateLock = proto.stateLock
   encoder._learningEnabled = proto.learningEnabled
   encoder.description = []
   encoder.encoders = None
   return encoder
コード例 #11
0
ファイル: adaptivescalar_test.py プロジェクト: hoploop/nupic3
  def testReadWrite(self):

    originalValue = self._l.encode(1)

    proto1 = AdaptiveScalarEncoderProto.new_message()
    self._l.write(proto1)

    # Write the proto to a temp file and read it back into a new proto
    with tempfile.TemporaryFile() as f:
      proto1.write(f)
      f.seek(0)
      proto2 = AdaptiveScalarEncoderProto.read(f)

    encoder = AdaptiveScalarEncoder.read(proto2)

    self.assertIsInstance(encoder, AdaptiveScalarEncoder)
    self.assertEqual(encoder.recordNum, self._l.recordNum)
    self.assertDictEqual(encoder.slidingWindow.__dict__,
                         self._l.slidingWindow.__dict__)
    self.assertEqual(encoder.w, self._l.w)
    self.assertEqual(encoder.minval, self._l.minval)
    self.assertEqual(encoder.maxval, self._l.maxval)
    self.assertEqual(encoder.periodic, self._l.periodic)
    self.assertEqual(encoder.n, self._l.n)
    self.assertEqual(encoder.radius, self._l.radius)
    self.assertEqual(encoder.resolution, self._l.resolution)
    self.assertEqual(encoder.name, self._l.name)
    self.assertEqual(encoder.verbosity, self._l.verbosity)
    self.assertEqual(encoder.clipInput, self._l.clipInput)
    self.assertTrue(numpy.array_equal(encoder.encode(1), originalValue))
    self.assertEqual(self._l.decode(encoder.encode(1)),
                     encoder.decode(self._l.encode(1)))

    # Feed in a new value and ensure the encodings match
    result1 = self._l.encode(7)
    result2 = encoder.encode(7)
    self.assertTrue(numpy.array_equal(result1, result2))
コード例 #12
0
class DeltaEncoder(AdaptiveScalarEncoder):
  """
  This is an implementation of a delta encoder. The delta encoder encodes
  differences between successive scalar values instead of encoding the actual
  values. It returns an actual value when decoding and not a delta.
  """


  def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
                resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
    """[ScalarEncoder class method override]"""
    self._learningEnabled = True
    self._stateLock = False
    self.width = 0
    self.encoders = None
    self.description = []
    self.name = name
    if periodic:
      #Delta scalar encoders take non-periodic inputs only
      raise Exception('Delta encoder does not encode periodic inputs')
    assert n!=0           #An adaptive encoder can only be intialized using n

    self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
                   maxval=maxval, clipInput=True, name=name, verbosity=verbosity, forced=forced)
    self.width+=self._adaptiveScalarEnc.getWidth()
    self.n = self._adaptiveScalarEnc.n
    self._prevAbsolute = None    #how many inputs have been sent to the encoder?
    self._prevDelta = None

  def encodeIntoArray(self, input, output, learn=None):
    if not isinstance(input, numbers.Number):
      raise TypeError(
          "Expected a scalar input but got input of type %s" % type(input))

    if learn is None:
      learn =  self._learningEnabled
    if input == SENTINEL_VALUE_FOR_MISSING_DATA:
      output[0:self.n] = 0
    else:
      #make the first delta zero so that the delta ranges are not messed up.
      if self._prevAbsolute==None:
        self._prevAbsolute= input
      delta = input - self._prevAbsolute
      self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn)
      if not self._stateLock:
        self._prevAbsolute = input
        self._prevDelta = delta
      return output


  def setStateLock(self, lock):
    self._stateLock = lock


  def setFieldStats(self, fieldName, fieldStatistics):
    pass


  def getBucketIndices(self, input, learn=None):
    return self._adaptiveScalarEnc.getBucketIndices(input, learn)


  def getBucketInfo(self, buckets):
    return self._adaptiveScalarEnc.getBucketInfo(buckets)


  def topDownCompute(self, encoded):
    """[ScalarEncoder class method override]"""

    #Decode to delta scalar
    if self._prevAbsolute==None or self._prevDelta==None:
      return [EncoderResult(value=0, scalar=0,
                             encoding=numpy.zeros(self.n))]
    ret = self._adaptiveScalarEnc.topDownCompute(encoded)
    if self._prevAbsolute != None:
      ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
                          scalar=ret[0].scalar+self._prevAbsolute,
                          encoding=ret[0].encoding)]
#      ret[0].value+=self._prevAbsolute
#      ret[0].scalar+=self._prevAbsolute
    return ret


  @classmethod
  def getSchema(cls):
    return DeltaEncoderProto


  @classmethod
  def read(cls, proto):
    encoder = object.__new__(cls)
    encoder.width = proto.width
    encoder.name = proto.name or None
    encoder.n = proto.n
    encoder._adaptiveScalarEnc = (
      AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
    )
    encoder._prevAbsolute = None if proto.prevAbsolute == 0 else proto.prevAbsolute
    encoder._prevDelta = None if proto.prevDelta == 0 else proto.prevDelta
    encoder._stateLock = proto.stateLock
    encoder._learningEnabled = proto.learningEnabled
    encoder.description = []
    encoder.encoders = None
    return encoder


  def write(self, proto):
    proto.width = self.width
    proto.name = self.name or ""
    proto.n = self.n
    self._adaptiveScalarEnc.write(proto.adaptiveScalarEnc)
    if self._prevAbsolute:
      proto.prevAbsolute = self._prevAbsolute
    if self._prevDelta:
      proto.prevDelta = self._prevDelta
    proto.stateLock = self._stateLock
    proto.learningEnabled = self._learningEnabled
コード例 #13
0
ファイル: adaptivescalar_test.py プロジェクト: Erichy94/nupic
 def setUp(self):
   # forced: it's strongly recommended to use w>=21, in the example we force
   # skip the check for readibility
   self._l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1,
                                   maxval=10, periodic=False, forced=True)
コード例 #14
0
ファイル: adaptivescalar_test.py プロジェクト: hoploop/nupic3
class AdaptiveScalarTest(unittest.TestCase):
  """Tests for AdaptiveScalarEncoder"""


  def setUp(self):
    # forced: it's strongly recommended to use w>=21, in the example we force
    # skip the check for readibility
    self._l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1,
                                    maxval=10, periodic=False, forced=True)

  def testMissingValues(self):
    """missing values"""
    # forced: it's strongly recommended to use w>=21, in the example we force
    # skip the check for readib.
    mv = AdaptiveScalarEncoder(name="mv", n=14, w=3, minval=1, maxval=8,
                               periodic=False, forced=True)
    empty = mv.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
    self.assertEqual(empty.sum(), 0)


  def testNonPeriodicEncoderMinMaxSpec(self):
    """Non-periodic encoder, min and max specified"""

    self.assertTrue(numpy.array_equal(
      self._l.encode(1),
      numpy.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                  dtype=defaultDtype)))
    self.assertTrue(numpy.array_equal(
      self._l.encode(2),
      numpy.array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                  dtype=defaultDtype)))
    self.assertTrue(numpy.array_equal(
      self._l.encode(10),
      numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
                  dtype=defaultDtype)))


  def testTopDownDecode(self):
    """Test the input description generation and topDown decoding"""
    l = self._l
    v = l.minval

    while v < l.maxval:
      output = l.encode(v)
      decoded = l.decode(output)

      (fieldsDict, _) = decoded
      self.assertEqual(len(fieldsDict), 1)

      (ranges, _) = fieldsDict.values()[0]
      self.assertEqual(len(ranges), 1)

      (rangeMin, rangeMax) = ranges[0]
      self.assertEqual(rangeMin, rangeMax)
      self.assertLess(abs(rangeMin - v), l.resolution)

      topDown = l.topDownCompute(output)[0]
      self.assertLessEqual(abs(topDown.value - v), l.resolution)

      # Test bucket support
      bucketIndices = l.getBucketIndices(v)
      topDown = l.getBucketInfo(bucketIndices)[0]
      self.assertLessEqual(abs(topDown.value - v), l.resolution / 2)
      self.assertEqual(topDown.value, l.getBucketValues()[bucketIndices[0]])
      self.assertEqual(topDown.scalar, topDown.value)
      self.assertTrue(numpy.array_equal(topDown.encoding, output))

      # Next value
      v += l.resolution / 4


  def testFillHoles(self):
    """Make sure we can fill in holes"""
    l=self._l
    decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1]))
    (fieldsDict, _) = decoded
    self.assertEqual(len(fieldsDict), 1)

    (ranges, _) = fieldsDict.values()[0]
    self.assertEqual(len(ranges), 1)
    self.assertSequenceEqual(ranges[0], [10, 10])

    decoded = l.decode(numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1]))
    (fieldsDict, _) = decoded
    self.assertEqual(len(fieldsDict), 1)
    (ranges, _) = fieldsDict.values()[0]
    self.assertEqual(len(ranges), 1)
    self.assertSequenceEqual(ranges[0], [10, 10])


  def testNonPeriodicEncoderMinMaxNotSpec(self):
    """Non-periodic encoder, min and max not specified"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=None,
                              maxval=None, periodic=False, forced=True)

    def _verify(v, encoded, expV=None):
      if expV is None:
        expV = v

      self.assertTrue(numpy.array_equal(
        l.encode(v),
        numpy.array(encoded, dtype=defaultDtype)))
      self.assertLessEqual(
        abs(l.getBucketInfo(l.getBucketIndices(v))[0].value - expV),
        l.resolution/2)

    def _verifyNot(v, encoded):
      self.assertFalse(numpy.array_equal(
        l.encode(v), numpy.array(encoded, dtype=defaultDtype)))

    _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(2, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(3, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
    _verify(-9, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-8, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-7, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-6, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-5, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
    _verify(0, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
    _verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
    _verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(11, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(12, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(13, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(14, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(15, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])


    #"""Test switching learning off"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1, maxval=10,
                              periodic=False, forced=True)
    _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(10, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])

    l.setLearning(False)
    _verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], expV=20)
    _verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)
    _verify(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)

    l.setLearning(True)
    _verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verifyNot(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verifyNot(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])


  def testSetFieldStats(self):
    """Test setting the min and max using setFieldStats"""
    def _dumpParams(enc):
      return (enc.n, enc.w, enc.minval, enc.maxval, enc.resolution,
              enc._learningEnabled, enc.recordNum,
              enc.radius, enc.rangeInternal, enc.padding, enc.nInternal)
    sfs = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=10,
                              periodic=False, forced=True)
    reg = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=100,
                              periodic=False, forced=True)
    self.assertNotEqual(_dumpParams(sfs), _dumpParams(reg),
                        ("Params should not be equal, since the two encoders "
                         "were instantiated with different values."))
    # set the min and the max using sFS to 1,100 respectively.
    sfs.setFieldStats("this", {"this":{"min":1, "max":100}})

    #Now the parameters for both should be the same
    self.assertEqual(_dumpParams(sfs), _dumpParams(reg),
                     ("Params should now be equal, but they are not. sFS "
                      "should be equivalent to initialization."))


  @unittest.skipUnless(
      capnp, "pycapnp is not installed, skipping serialization test.")
  def testReadWrite(self):

    originalValue = self._l.encode(1)

    proto1 = AdaptiveScalarEncoderProto.new_message()
    self._l.write(proto1)

    # Write the proto to a temp file and read it back into a new proto
    with tempfile.TemporaryFile() as f:
      proto1.write(f)
      f.seek(0)
      proto2 = AdaptiveScalarEncoderProto.read(f)

    encoder = AdaptiveScalarEncoder.read(proto2)

    self.assertIsInstance(encoder, AdaptiveScalarEncoder)
    self.assertEqual(encoder.recordNum, self._l.recordNum)
    self.assertDictEqual(encoder.slidingWindow.__dict__,
                         self._l.slidingWindow.__dict__)
    self.assertEqual(encoder.w, self._l.w)
    self.assertEqual(encoder.minval, self._l.minval)
    self.assertEqual(encoder.maxval, self._l.maxval)
    self.assertEqual(encoder.periodic, self._l.periodic)
    self.assertEqual(encoder.n, self._l.n)
    self.assertEqual(encoder.radius, self._l.radius)
    self.assertEqual(encoder.resolution, self._l.resolution)
    self.assertEqual(encoder.name, self._l.name)
    self.assertEqual(encoder.verbosity, self._l.verbosity)
    self.assertEqual(encoder.clipInput, self._l.clipInput)
    self.assertTrue(numpy.array_equal(encoder.encode(1), originalValue))
    self.assertEqual(self._l.decode(encoder.encode(1)),
                     encoder.decode(self._l.encode(1)))

    # Feed in a new value and ensure the encodings match
    result1 = self._l.encode(7)
    result2 = encoder.encode(7)
    self.assertTrue(numpy.array_equal(result1, result2))