u'c0_dayOfWeek': None, u'c1': { 'name': 'c1', 'clipInput': True, 'n': 275, 'fieldname': 'c1', 'w': 21, 'type': 'AdaptiveScalarEncoder' }, u'c0_weekend': None } }, 'inferenceType': 'NontemporalMultiStep', 'spParams': { 'synPermInactiveDec': 0.052500000000000005 }, 'tmParams': { 'minThreshold': 11, 'activationThreshold': 14, 'pamLength': 3 }, 'clParams': { 'alpha': 0.050050000000000004 } }, 'dataPath': 'data/a.csv', } mod = importBaseDescription('../base.py', config) locals().update(mod.__dict__)
# This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- ## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.exp_description_helpers import importBaseDescription # the sub-experiment configuration config = \ { 'dataSource': 'file://' + os.path.join(os.path.dirname(__file__), '../datasets/simple_3.csv'), 'modelParams': { 'clParams': { 'verbosity': 0, 'steps': '1,3'}, 'sensorParams': { 'encoders': { }, 'verbosity': 0}, 'spParams': { }, 'tmParams': { }}, 'predictedField': 'field2', 'predictionSteps': [1, 3]} mod = importBaseDescription('../base/description.py', config) locals().update(mod.__dict__)
'tmParams': { 'minThreshold': 11, 'activationThreshold': 14, 'pamLength': 3 }, 'sensorParams': { 'encoders': { u'cpu': { 'maxval': 100.0, 'name': 'cpu', 'clipInput': True, 'minval': 0.0, 'n': 296, 'fieldname': 'cpu', 'w': 21, 'type': 'ScalarEncoder' } } }, 'spParams': { 'synPermInactiveDec': 0.055135 }, 'clParams': { 'alpha': 0.055045000000000004 } }, } mod = importBaseDescription('../cpu_model_store/description.py', config) locals().update(mod.__dict__)
## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.exp_description_helpers import importBaseDescription # the sub-experiment configuration config = \ { 'modelParams': { 'clParams': { 'verbosity': 0}, 'sensorParams': { 'encoders': { 'consumption': { 'clipInput': True, 'fieldname': u'consumption', 'n': 28, 'name': u'consumption', 'type': 'AdaptiveScalarEncoder', 'w': 21}, 'timestamp_dayOfWeek': None, 'timestamp_timeOfDay': { 'fieldname': u'timestamp', 'name': u'timestamp_timeOfDay', 'timeOfDay': ( 21, 8), 'type': 'DateEncoder'}, 'timestamp_weekend': None}, 'verbosity': 0}, 'spParams': { }, 'tmParams': { 'activationThreshold': 14, 'minThreshold': 12, 'verbosity': 0}}, 'numRecords': 16000} mod = importBaseDescription('../hotgym/description.py', config) locals().update(mod.__dict__)
# # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """This file defines parameters for a prediction experiment.""" import os from nupic.frameworks.opf.exp_description_helpers import importBaseDescription # the sub-experiment configuration config = \ { 'modelParams': { 'clParams': { }, 'sensorParams': { 'encoders': { }}, 'spParams': { }, 'tmParams': { 'activationThreshold': 12}}} mod = importBaseDescription('./base.py', config) locals().update(mod.__dict__)
# # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- ## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.exp_description_helpers import importBaseDescription # the sub-experiment configuration config = \ { 'dataSource': 'file://' + os.path.join(os.path.dirname(__file__), '../datasets/category_TM_0.csv'), 'modelParams': { 'clParams': { 'verbosity': 0}, 'sensorParams': { 'encoders': { }, 'verbosity': 0}, 'spParams': { }, 'tmEnable': True, 'tmParams': { }}} mod = importBaseDescription('../base_category/description.py', config) locals().update(mod.__dict__)
# See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- ## This file defines parameters for a prediction experiment. ############################################################################### # IMPORTANT!!! # This params file is dynamically generated by the RunExperimentPermutations # script. Any changes made manually will be over-written the next time # RunExperimentPermutations is run!!! ############################################################################### from nupic.frameworks.opf.exp_description_helpers import importBaseDescription # the sub-experiment configuration config ={ 'aggregationInfo' : {'seconds': 0, 'fields': [], 'months': 0, 'days': 0, 'years': 0, 'hours': 0, 'microseconds': 0, 'weeks': 0, 'minutes': 0, 'milliseconds': 0}, 'modelParams' : {'tmParams': {'minThreshold': 10, 'activationThreshold': 13, 'pamLength': 2}, 'sensorParams': {'encoders': {u'timestamp_dayOfWeek': {'dayOfWeek': (21, 4.5265359696838647), 'name': 'timestamp', 'fieldname': 'timestamp', 'type': 'DateEncoder'}, u'timestamp_weekend': {'name': 'timestamp', 'type': 'DateEncoder', 'fieldname': 'timestamp', 'weekend': (21, 1)}, u'timestamp_timeOfDay': None, u'Ct': {'maxval': 6.0, 'name': 'Ct', 'clipInput': True, 'minval': 0, 'n': 92, 'fieldname': 'Ct', 'w': 21, 'type': 'ScalarEncoder'}}}, 'spParams': {'synPermInactiveDec': 0.083048695689323701}, 'clParams': {'alpha': 0.021640002042688296}}, } mod = importBaseDescription('..\description.py', config) locals().update(mod.__dict__)
# ---------------------------------------------------------------------- ## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.exp_description_helpers import importBaseDescription # the sub-experiment configuration config = \ { 'dataSource': 'file://' + os.path.join(os.path.dirname(__file__), '../datasets/scalar_SP_0.csv'), 'modelParams': { 'clParams': { 'verbosity': 0}, 'inferenceType': 'NontemporalClassification', 'sensorParams': { 'encoders': { 'field1': { 'clipInput': True, 'fieldname': 'field1', 'maxval': 0.10000000000000001, 'minval': 0.0, 'n': 11, 'name': 'field1', 'type': 'AdaptiveScalarEncoder', 'w': 7}}, 'verbosity': 0}, 'spEnable': False, 'spParams': { 'spVerbosity': 0}, 'tmEnable': False, 'tmParams': { }}} mod = importBaseDescription('../base_scalar/description.py', config) locals().update(mod.__dict__)
# # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- ## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.exp_description_helpers import importBaseDescription # the sub-experiment configuration config = \ { 'dataSource': 'file://' + os.path.join(os.path.dirname(__file__), '../datasets/category_TM_1.csv'), 'modelParams': { 'clParams': { 'verbosity': 0}, 'sensorParams': { 'encoders': { }, 'verbosity': 0}, 'spParams': { 'spVerbosity': 0}, 'tmEnable': True, 'tmParams': { 'verbosity': 0}}} mod = importBaseDescription('../base_category/description.py', config) locals().update(mod.__dict__)