case, val = args if case == 'case 1': return val else: return val ** 2 # define a search space space = hpo.hp.choice('a', [ ('case 1', 1 + hpo.hp.lognormal('c1', 0, 1)), ('case 2', hpo.hp.uniform('c2', -10, 10)) ]) # minimize the objective over the space trials = hpo.Trials() best = nu_fmin(objective, space, algo=hpo.tpe.suggest, max_evals=100, trials=trials) print(best) # print(best) # # 베스트 hyperparameter 값 -> {'a': 1, 'c2': 0.01420615366247227} # print(space_eval(space, best)) # # -> ('case 2', 0.01420615366247227} # trials.best_trial['result'] # # -> 베스트 loss 값 # print(trials.results[0]['loss']) # # -> 1.3010621119448424 # print(trials.vals) # # -> hp 값들 # print(trials.results) # # -> loss 값 # print(trials.results[0]['loss'])
metrics=['acc']) # data 설정 x_val = x_train[:2] partial_x_train = x_train[2:3] y_val = y_train[:2] partial_y_train = y_train[2:3] # 학습 history = model.fit(partial_x_train, partial_y_train, epochs=params['epochs'], batch_size=params['batch_size'], validation_data=(x_val, y_val)) loss, acc = model.evaluate(x_test[:1], y_test[:1]) return {'loss': -acc, 'status': hpo.STATUS_OK} trials = hpo.Trials() best = nu_fmin("hello", objective, space, algo=hpo.tpe.suggest, max_evals=50, trials=trials) print("====================hps====================") print(trials.vals) print("====================best===================") print(best)