コード例 #1
0
def sample_nuts_to_df(distribution, n_samples=5000,
                      n_burn_in=5000, **kwargs):
    """
    runs NUTS on distribution for num_steps
    returns a dataframe containing samples, number of gradient evaluations at each step,
    distributions : initialized distributions object, must have nbatch=1
    sample_steps: the number of sampling steps concatenated into one time step. LAHMC used 10
    n_batch: the number of sampling runs from nuts concatenated into a batch
    n_burn_in: number of steps for NUTS to burn in and
    """
    assert distribution.nbatch == 1
    x_init = distribution.Xinit[:, 0]
    samples = nuts6(distribution, n_samples, n_burn_in, x_init)[0]
    grad_per_sample_step = distribution.dEdX_count / float(n_samples + n_burn_in)
    e_per_sample_step = distribution.E_count / float(n_samples + n_burn_in)
    print "grad per sample step: {}".format(grad_per_sample_step)

    recs = {}
    for t in xrange(n_samples):
        recs[t] = {
            'X': samples[t].reshape(distribution.ndims, 1),
            'num grad' : grad_per_sample_step * t,
            'num energy' : e_per_sample_step * t
        }
    df = pd.DataFrame.from_records(recs).T
    # might want to truncate df at gradient count
    return df
コード例 #2
0
    def sample(self, pos0, M, Madapt, delta=0.6, **kwargs):
        """ Runs NUTS6 """
        samples, lnprob, epsilon = nuts6(self._sample_fn, M, Madapt, pos0,
                                         delta)
        self._chain = samples
        self._lnprob = lnprob
        self._epsilon = epsilon

        return samples
コード例 #3
0
ファイル: imf_examples.py プロジェクト: rendanim/NUTS
def test_nuts6():
    # Generate toy data.
    Nstars = int(1e5)
    alpha = 2.35
    M_min = 1.0
    M_max = 100.0
    Masses = random_PowerLaw(Nstars, alpha, M_min, M_max)
    LogM = np.log(Masses)
    D = np.mean(LogM) * Nstars

    #NUTS pars
    M, Madapt = 1000, 1000
    theta0 = np.asarray([3.0])
    delta = 0.5

    nuts_fn = NutsSampler_fn_wrapper(logLikelihood, grad_logLikelihood, D,
                                     Nstars, M_min, M_max)
    #nuts_fn.verbose = True

    t_start = time.time()
    print("Starting Sampling at %s" % time.ctime(t_start))
    A, lnprob, epsilon = nuts6(nuts_fn,
                               M,
                               Madapt,
                               theta0,
                               delta,
                               progress=True)
    t_stop = time.time()
    print("Sampling Completed in %0.2f seconds" % (t_stop - t_start))

    plt.figure(1)

    # Print Monte-Carlo estimate of alpha.
    print("Mean:  " + str(np.mean(A)))
    per = np.percentile(A, [16, 50, 84])
    print("Alpha = {} (+{} / - {})".format(per[1], per[2] - per[1],
                                           per[1] - per[0]))

    n, b = np.histogram(A, 30)
    x = 0.5 * (b[:-1] + b[1:])
    y = n.astype(float) / n.sum()
    plt.step(x, y, color='b', lw=3, where='mid')
    plt.vlines(per, 0., max(y), linestyle='--', color='b', lw=1)

    ylim = plt.ylim()
    plt.vlines(alpha, 0, ylim[1], color='r', lw=3)
    plt.ylim(ylim)
    plt.xlabel(r'$\alpha$', fontsize=24)
    plt.ylabel(r'$\cal L($Data$;\alpha)$', fontsize=24)
    plt.show()
コード例 #4
0
ファイル: imf_examples.py プロジェクト: mfouesneau/NUTS
def test_nuts6():
    # Generate toy data.
    Nstars = int(1e5)
    alpha  = 2.35
    M_min  = 1.0
    M_max  = 100.0
    Masses = random_PowerLaw(Nstars, alpha, M_min, M_max)
    LogM   = np.log(Masses)
    D      = np.mean(LogM) * Nstars

    #NUTS pars
    M, Madapt = 1000, 1000
    theta0 = np.asarray([3.0])
    delta = 0.5

    nuts_fn = NutsSampler_fn_wrapper(logLikelihood, grad_logLikelihood, D, Nstars, M_min, M_max)
    #nuts_fn.verbose = True

    t_start = time.time()
    print("Starting Sampling at %s" % time.ctime(t_start))
    A, lnprob, epsilon = nuts6(nuts_fn, M, Madapt, theta0, delta)
    t_stop = time.time()
    print("Sampling Completed in %0.2f seconds" % (t_stop - t_start))

    plt.figure(1)

    # Print Monte-Carlo estimate of alpha.
    print("Mean:  " + str(np.mean(A)))
    per = np.percentile(A, [16, 50, 84])
    print("Alpha = {} (+{} / - {})".format( per[1], per[2] - per[1], per[1] - per[0] ))

    n, b = np.histogram(A, 30)
    x = 0.5 * (b[:-1] + b[1:])
    y = n.astype(float) / n.sum()
    plt.step(x, y, color='b', lw=3, where='mid')
    plt.vlines(per, 0., max(y), linestyle='--', color='b', lw=1)

    ylim = plt.ylim()
    plt.vlines(alpha, 0, ylim[1], color='r', lw=3)
    plt.ylim(ylim)
    plt.xlabel(r'$\alpha$', fontsize=24)
    plt.ylabel(r'$\cal L($Data$;\alpha)$', fontsize=24)
    plt.show()
        numRej += 1

#plot of resulting distribution
output = np.array(ptArr)
output.shape
plt.hist(invlogit(output[1, :]))

#If using anaconda, call: conda install -c conda-forge
from nuts import nuts6

D = beta0.shape[0]
M = 1000
Madapt = 1000
delta = 0.2


def exampletargetfornuts(beta):
    """
    Example of a target distribution that could be sampled from using NUTS.
    (Although of course you could sample from it more efficiently)
    Doesn't include the normalizing constant.
    """

    return mylogpost(beta, ydata, nsamp, A, sens,
                     spec), mylogpost_grad(beta, ydata, nsamp, A, sens, spec)


samples, lnprob, epsilon = nuts6(exampletargetfornuts, M, Madapt, opval.x,
                                 delta)
plt.hist(invlogit(samples[:, 1]))
コード例 #6
0
    def sample(self, quiet=False):

        assert self._is_setup, "You forgot to setup the sampler!"

        loud = not quiet

        self._update_free_parameters()

        n_dim = len(list(self._free_parameters.keys()))

        # Get starting point

        p0 = self._get_starting_points(1)[0]
        print(p0)
        
        # Deactivate memoization in astromodels, which is useless in this case since we will never use twice the
        # same set of parameters
        with use_astromodels_memoization(False):

            if threeML_config["parallel"]["use-parallel"]:

                c = ParallelClient()
                view = c[:]
                pool = view

            else:

                pool = None

                def logp(theta):

                    return self.get_posterior(theta)

                
                def grad(theta):

                    return numerical_grad(theta, self.get_posterior)
                
                nuts_fn = nuts.NutsSampler_fn_wrapper(self.get_posterior, grad)

                samples, lnprob, epsilon = nuts.nuts6(nuts_fn, self._n_iterations, self._n_adapt, p0)
                
#            sampler = nuts.NUTSSampler(n_dim, self.get_posterior, gradfn=None)  

            # # if a seed is provided, set the random number seed
            # if self._seed is not None:

            #     sampler._random.seed(self._seed)

            # # Run the true sampling

            # samples = sampler.run_mcmc(
            #     initial_state=p0,
            #     M=self._n_iterations,
            #     Madapt=self._n_adapt,
            #     delta=self._delta,
            #     progress=loud,
            # )


        self._sampler = None
        self._raw_samples = samples

        # Compute the corresponding values of the likelihood

        self._test = lnprob
        
        # First we need the prior
        log_prior = np.array([self._log_prior(x) for x in self._raw_samples])

        # Now we get the log posterior and we remove the log prior

        self._log_like_values = np.array([self._log_like(x) for x in self._raw_samples])

        # we also want to store the log probability

        self._log_probability_values = log_prior + self._log_like_values

        self._marginal_likelihood = None

        self._build_samples_dictionary()

        self._build_results()

        # Display results
        if loud:
            self._results.display()

        return self.samples