コード例 #1
0
ファイル: test_operator_crop.py プロジェクト: woshifzh/DALI
    def __init__(self,
                 device,
                 batch_size,
                 num_threads=1,
                 device_id=0,
                 num_gpus=1,
                 should_perform_cast=False):
        super(CropCastPipeline, self).__init__(batch_size, num_threads,
                                               device_id)
        self.should_perform_cast = should_perform_cast
        self.device = device
        self.input = ops.CaffeReader(path=caffe_db_folder,
                                     shard_id=device_id,
                                     num_shards=num_gpus)
        self.decode = ops.HostDecoder(device="cpu", output_type=types.RGB)

        if self.should_perform_cast:
            self.crop = ops.Crop(device=self.device,
                                 crop=(224, 224),
                                 crop_pos_x=0.3,
                                 crop_pos_y=0.2,
                                 image_type=types.RGB,
                                 output_dtype=types.FLOAT)
            self.crop2 = ops.Crop(device=self.device,
                                  crop=(224, 224),
                                  crop_pos_x=0.0,
                                  crop_pos_y=0.0,
                                  image_type=types.RGB,
                                  output_dtype=types.UINT8)
        else:
            self.crop = ops.Crop(device=self.device,
                                 crop=(224, 224),
                                 crop_pos_x=0.3,
                                 crop_pos_y=0.2,
                                 image_type=types.RGB)
コード例 #2
0
 def __init__(self, device, batch_size, layout, iterator, num_threads=1, device_id=0, tested_operator = None):
     super(MultichannelSynthPipeline, self).__init__(batch_size,
                                                     num_threads,
                                                     device_id)
     self.device = device
     self.layout = layout
     self.iterator = iterator
     self.inputs = ops.ExternalSource()
     self.tested_operator = tested_operator
     if self.tested_operator == 'resize' or not self.tested_operator:
         self.resize = ops.Resize(device = self.device,
                                  resize_y = 900,
                                  resize_x = 300,
                                  min_filter=types.DALIInterpType.INTERP_LINEAR)
     if self.tested_operator == 'crop' or not self.tested_operator:
         self.crop = ops.Crop(device = self.device,
                              crop = (220, 224),
                              crop_pos_x = 0.3,
                              crop_pos_y = 0.2)
     if self.tested_operator == 'transpose' or not self.tested_operator:
         self.transpose = ops.Transpose(device = self.device,
                                        perm = (1, 0, 2),
                                        transpose_layout = False)
     if self.tested_operator == 'normalize' or not self.tested_operator:
         self.cmn = ops.CropMirrorNormalize(device = self.device,
                                            std = 255.,
                                            mean = 0.,
                                            output_layout = "HWC",
                                            dtype = types.FLOAT)
コード例 #3
0
ファイル: cifar10.py プロジェクト: wm901115nwpu/LLSQ
 def __init__(self,
              batch_size,
              num_threads,
              device_id,
              data_dir,
              crop=32,
              dali_cpu=False,
              local_rank=0,
              world_size=1,
              cutout=0):
     super(HybridTrainPipe_CIFAR, self).__init__(batch_size,
                                                 num_threads,
                                                 device_id,
                                                 seed=12 + device_id)
     self.iterator = iter(
         CIFAR_INPUT_ITER(batch_size, 'train', root=data_dir))
     dali_device = "gpu"
     self.input = ops.ExternalSource()
     self.input_label = ops.ExternalSource()
     self.pad = ops.Paste(device=dali_device, ratio=1.25, fill_value=0)
     self.uniform = ops.Uniform(range=(0., 1.))
     self.crop = ops.Crop(device=dali_device, crop_h=crop, crop_w=crop)
     self.cmnp = ops.CropMirrorNormalize(
         device="gpu",
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         image_type=types.RGB,
         mean=[0.4914 * 255., 0.4822 * 255., 0.4465 * 255.],
         std=[0.2023 * 255., 0.1994 * 255., 0.2010 * 255.])
     self.coin = ops.CoinFlip(probability=0.5)
コード例 #4
0
    def __init__(self,
                 device,
                 batch_size,
                 iterator,
                 data_shape,
                 data_layout,
                 num_threads=1,
                 device_id=0):
        super(Crop3dPipeline, self).__init__(batch_size, num_threads,
                                             device_id)
        self.device = device
        self.iterator = iterator
        self.inputs = ops.ExternalSource()
        self.data_shape = data_shape
        self.data_layout = data_layout

        if self.data_layout == types.NDHWC:
            D, H, W = self.data_shape[0], self.data_shape[1], self.data_shape[
                2]
        elif self.data_layout == types.NCDHW:
            D, H, W = self.data_shape[1], self.data_shape[2], self.data_shape[
                3]
        else:
            assert (False)

        self.crop = ops.Crop(device=self.device,
                             crop_pos_z=0.1,
                             crop_pos_y=0.2,
                             crop_pos_x=0.3,
                             crop_d=D * 0.91,
                             crop_h=H * 0.85,
                             crop_w=W * 0.75,
                             image_type=types.RGB)
コード例 #5
0
    def __init__(self, root_dir, batch_size, num_threads, device_id,
                 use_shift_scale=False,
                 num_shards=None, shard_id=None):
        super().__init__(batch_size, num_threads, device_id, seed=12)

        self.random_angle = ops.Uniform(range=(0, 360.0))
        self.random = ops.Uniform(range=(0.5, 1.5))
        self.random_coin = ops.CoinFlip()

        self.input = ops.FileReader(
            file_root=root_dir, random_shuffle=True,
            num_shards=num_shards, shard_id=shard_id,
        )

        self.decode = ops.ImageDecoder(device='mixed')
        self.rotate = ops.Rotate(device='gpu', interp_type=types.INTERP_LINEAR)
        self.crop = ops.Crop(device='gpu', crop=(224, 224))
        self.use_shift_scale = use_shift_scale
        if self.use_shift_scale:
            self.shift_scale = ops.RandomResizedCrop(
                device='gpu',
                size=(224, 224),
                interp_type=types.INTERP_LINEAR,
                random_area=(0.3, 1.0),
            )
        self.flip = ops.Flip(device='gpu')
        self.color_twist = ops.ColorTwist(device='gpu')
コード例 #6
0
ファイル: test_crop.py プロジェクト: matthew-frank/DALI
    def __init__(self,
                 device,
                 batch_size,
                 iterator,
                 data_shape,
                 data_layout,
                 num_threads=1,
                 device_id=0,
                 crop_seq_as_depth=False):
        super(Crop3dPipeline, self).__init__(batch_size, num_threads,
                                             device_id)
        self.device = device
        self.iterator = iterator
        self.inputs = ops.ExternalSource()
        self.data_shape = data_shape
        self.data_layout = data_layout

        if self.data_layout == "DHWC":
            D, H, W, _ = self.data_shape
        elif self.data_layout == "CDHW":
            _, D, H, W = self.data_shape
        elif self.data_layout == "FHWC" and crop_seq_as_depth:
            D, H, W, _ = self.data_shape
        elif self.data_layout == "FCHW" and crop_seq_as_depth:
            D, _, H, W = self.data_shape
        else:
            assert False

        self.crop = ops.Crop(device=self.device,
                             crop_pos_z=0.1,
                             crop_pos_y=0.2,
                             crop_pos_x=0.3,
                             crop_d=D * 0.91,
                             crop_h=H * 0.85,
                             crop_w=W * 0.75)
コード例 #7
0
ファイル: dali_data.py プロジェクト: MIVRC/HERN-PyTorch
 def __init__(self,
              dataset_dir,
              batch_size,
              num_threads,
              device_id,
              crop,
              dali_cpu=False,
              local_rank=0,
              test=False):
     super(HybridTrainPipe, self).__init__(batch_size,
                                           num_threads,
                                           device_id,
                                           seed=666)
     self.raw2rgbit = iter(
         RAW2RGBInputIterator(dataset_dir, batch_size, test=test))
     dali_device = "gpu"
     self.input_data = ops.ExternalSource()
     self.input_label = ops.ExternalSource()
     self.data_decode = ops.ImageDecoder(device="mixed")
     self.label_decode = ops.ImageDecoder(device="mixed",
                                          output_type=types.RGB)
     self.uniform = ops.Uniform(range=(0., 1.))
     self.crop = ops.Crop(device=dali_device, crop_h=crop, crop_w=crop)
     self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                         output_dtype=types.FLOAT,
                                         output_layout=types.NCHW)
     self.coin = ops.CoinFlip(probability=0.5)
コード例 #8
0
ファイル: debug_without_sacred.py プロジェクト: gddcx/yolov1
 def __init__(self, params, device_id, files, labels):
     super().__init__(params.batch_size,
                      params.num_gpus * 8,
                      device_id,
                      seed=params.seed)
     # file_root有坑,并不是文件夹名字就是label,按照文件夹顺序(1, 10, 11, 2, 20, 21, ...)分别给与0,1,2,3,4...标签
     self.input = ops.FileReader(files=files,
                                 labels=labels,
                                 random_shuffle=True)
     self.decocer = ops.ImageDecoder(device='mixed', output_type=types.RGB)
     self.resize = ops.Resize(device='gpu', resize_shorter=224)
     self.pos_rng_x = ops.random.Uniform(range=(0.0, 1.0))
     self.pos_rng_y = ops.random.Uniform(range=(0.0, 1.0))
     self.crop = ops.Crop(device='gpu', crop_h=224, crop_w=224)
     self.flip = ops.Flip(device='gpu')
     self.coinflip = ops.random.CoinFlip(probability=0.5)
     self.hsv = ops.Hsv(device='gpu')
     self.saturation = ops.random.Uniform(range=(0.8, 1.0))
     self.value = ops.random.Uniform(range=(0.8, 1.0))
     mean = torch.Tensor(params.mean).unsqueeze(0).unsqueeze(0) * 255
     std = torch.Tensor(params.std).unsqueeze(0).unsqueeze(0) * 255
     self.normalize = ops.Normalize(axes=[0, 1],
                                    mean=mean,
                                    stddev=std,
                                    device='gpu',
                                    batch=False)
     self.transpose = ops.Transpose(device='gpu', perm=[2, 0, 1])
コード例 #9
0
ファイル: test_operator_crop.py プロジェクト: woshifzh/DALI
    def __init__(self,
                 device,
                 batch_size,
                 num_threads=1,
                 device_id=0,
                 num_gpus=1,
                 is_fused_decoder=False):
        super(CropPipeline, self).__init__(batch_size, num_threads, device_id)
        self.is_fused_decoder = is_fused_decoder
        self.device = device
        self.input = ops.CaffeReader(path=caffe_db_folder,
                                     shard_id=device_id,
                                     num_shards=num_gpus)

        if self.is_fused_decoder:
            self.decode = ops.HostDecoderCrop(device="cpu",
                                              crop=(224, 224),
                                              crop_pos_x=0.3,
                                              crop_pos_y=0.2,
                                              output_type=types.RGB)
        else:
            self.decode = ops.HostDecoder(device="cpu", output_type=types.RGB)
            self.crop = ops.Crop(device=self.device,
                                 crop=(224, 224),
                                 crop_pos_x=0.3,
                                 crop_pos_y=0.2,
                                 image_type=types.RGB)
コード例 #10
0
ファイル: get_data_iter.py プロジェクト: paperscodes/CAP
 def __init__(self,
              batch_size,
              num_threads,
              device_id,
              data_dir,
              crop,
              size,
              local_rank=0,
              world_size=1):
     super(HybridValPipe_CIFAR, self).__init__(batch_size,
                                               num_threads,
                                               device_id,
                                               seed=12 + device_id)
     self.iterator = iter(CIFAR_INPUT_ITER(batch_size, 'val',
                                           root=data_dir))
     self.input = ops.ExternalSource()
     self.input_label = ops.ExternalSource()
     self.pad = ops.Paste(device="gpu", ratio=1., fill_value=0)
     self.uniform = ops.Uniform(range=(0., 1.))
     self.crop = ops.Crop(device="gpu", crop_h=32, crop_w=32)
     self.coin = ops.CoinFlip(probability=0.5)
     self.flip = ops.Flip(device="gpu")
     self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                         output_layout=types.NCHW,
                                         mean=[125.31, 122.95, 113.87],
                                         std=[63.0, 62.09, 66.70])
コード例 #11
0
    def __init__(self, batch_size, sequence_length, num_threads, device_id, file_root, crop_size, transforms=None):
        super(VideoReaderPipeline, self).__init__(batch_size, num_threads, device_id, seed=12)
        self.reader = ops.VideoReader(
            device='gpu',
            file_root=file_root,
            sequence_length=sequence_length,
            normalized=False,
            random_shuffle=True,
            image_type=types.RGB,
            dtype=types.UINT8,
            initial_fill=16
        )

        self.crop = ops.Crop(device="gpu", crop=crop_size, output_dtype=types.FLOAT)
        self.transpose = ops.Transpose(device="gpu", perm=[3, 0, 1, 2])
        self.uniform = ops.Uniform(range=(0.0, 1.0))
        self.flip = ops.Flip(device="gpu", horizontal=1, vertical=0)
        # self.normalize = ops.NormalizePermute(
        #     device="gpu",
        #     mean=[0.485, 0.456, 0.406],
        #     std=[0.229, 0.224, 0.225],
        #     width=224,
        #     height=224
        # )
        self.cmn = ops.CropMirrorNormalize(
             device="gpu",
             output_dtype=types.FLOAT,
        #     # output_layout=types.NCHW,
             crop=(224, 224),
             image_type=types.RGB,
             mean=[0.485, 0.456, 0.406],
             std=[0.229, 0.224, 0.225]
        )
コード例 #12
0
 def __init__(self,
              device,
              batch_size,
              num_threads=1,
              device_id=0,
              num_gpus=1,
              is_old_crop=True):
     super(CropSequencePipeline, self).__init__(batch_size, num_threads,
                                                device_id)
     self.device = device
     VIDEO_FILES = [
         test_data_video + '/' + file
         for file in ['sintel_trailer_short.mp4']
     ]
     self.input = ops.VideoReader(device='gpu',
                                  filenames=VIDEO_FILES,
                                  sequence_length=10,
                                  shard_id=0,
                                  num_shards=1,
                                  random_shuffle=False,
                                  normalized=True,
                                  image_type=types.RGB,
                                  dtype=types.UINT8)
     if is_old_crop:
         self.crop = ops.Crop(device=device,
                              crop=(224, 224),
                              crop_pos_x=0.3,
                              crop_pos_y=0.2,
                              image_type=types.RGB)
     else:
         self.crop = ops.NewCrop(device=device,
                                 crop=(224, 224),
                                 crop_pos_x=0.3,
                                 crop_pos_y=0.2,
                                 image_type=types.RGB)
コード例 #13
0
ファイル: test_crop.py プロジェクト: matthew-frank/DALI
    def __init__(self,
                 device,
                 batch_size,
                 data_iterator,
                 num_threads=1,
                 device_id=0,
                 num_gpus=1,
                 crop_shape=(224, 224),
                 crop_x=0.3,
                 crop_y=0.2,
                 extra_outputs=False,
                 out_of_bounds_policy=None,
                 fill_values=None,
                 layout="HWC"):
        super(CropSynthPipe, self).__init__(batch_size, num_threads, device_id)
        self.device = device
        self.extra_outputs = extra_outputs
        self.inputs = ops.ExternalSource()
        self.data_iterator = data_iterator
        self.layout = layout

        self.crop = ops.Crop(device=self.device,
                             crop=crop_shape,
                             crop_pos_x=crop_x,
                             crop_pos_y=crop_y,
                             out_of_bounds_policy=out_of_bounds_policy,
                             fill_values=fill_values)
コード例 #14
0
    def __init__(self,
                 root,
                 split,
                 batch_size,
                 device_id,
                 dali_cpu=False,
                 local_rank=0,
                 world_size=1,
                 num_workers=2,
                 augment=False,
                 resize=False,
                 resize_size=314,
                 crop=True,
                 crop_size=314,
                 shuffle=True,
                 flip=True,
                 rotate=False,
                 rotate_angle=10.0):
        super(VOCDali, self).__init__(batch_size,
                                      num_threads=num_workers,
                                      device_id=device_id,
                                      seed=12 + device_id)
        self.iterator = iter(VOCIter(batch_size, split, root, shuffle))
        self.split = split
        assert self.split in ['train', 'val']
        dali_device = "gpu" if not dali_cpu else "cpu"
        self.input = ops.ExternalSource()
        self.input_label = ops.ExternalSource()

        self.is_flip = flip
        self.is_rotate = rotate
        self.is_augment = augment
        self.is_crop = crop
        self.is_resize = resize

        self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB)
        # self.cast = ops.Cast(device='gpu', dtype=types.INT32)
        self.rng = ops.Uniform(range=(0., 1.))
        self.coin = ops.CoinFlip(probability=0.5)
        # 定义大小
        self.resize = ops.Resize(device="gpu",
                                 resize_x=resize_size,
                                 resize_y=resize_size,
                                 interp_type=types.INTERP_TRIANGULAR)
        # 定义旋转
        self.rotate = ops.Rotate(device="gpu", angle=rotate_angle)
        # 定义翻转
        self.flip = ops.Flip(device="gpu", vertical=1, horizontal=0)
        # 定义剪裁
        self.crop = ops.Crop(device=dali_device,
                             crop_h=crop_size,
                             crop_w=crop_size)
        # 定义正则化
        self.cmnp = ops.CropMirrorNormalize(
            device=dali_device,
            output_dtype=types.FLOAT,
            output_layout=types.NCHW,
            image_type=types.RGB,
            mean=[0.45734706 * 255, 0.43338275 * 255, 0.40058118 * 255],
            std=[0.23965294 * 255, 0.23532275 * 255, 0.2398498 * 255])
コード例 #15
0
    def __init__(self, device, batch_size, num_threads=1, device_id=0):
        super(MultichannelPipeline, self).__init__(batch_size, num_threads,
                                                   device_id)
        self.device = device

        self.reader = ops.FileReader(file_root=multichannel_tiff_root)

        decoder_device = 'mixed' if self.device == 'gpu' else 'cpu'
        self.decoder = ops.ImageDecoder(device=decoder_device,
                                        output_type=types.ANY_DATA)

        self.resize = ops.Resize(device=self.device,
                                 resize_y=900,
                                 resize_x=300,
                                 min_filter=types.DALIInterpType.INTERP_LINEAR)

        self.crop = ops.Crop(device=self.device,
                             crop_h=220,
                             crop_w=224,
                             crop_pos_x=0.3,
                             crop_pos_y=0.2,
                             image_type=types.ANY_DATA)

        self.transpose = ops.Transpose(device=self.device,
                                       perm=(1, 0, 2),
                                       transpose_layout=False)

        self.cmn = ops.CropMirrorNormalize(device=self.device,
                                           std=255.,
                                           mean=0.,
                                           output_layout="HWC",
                                           output_dtype=types.FLOAT)
コード例 #16
0
    def __init__(self, size, fill_value):
        self.rz_img = ops.Resize(device="gpu", resize_longer=size)
        self.rz_ann = ops.Resize(device="gpu",
                                 resize_longer=size,
                                 interp_type=types.DALIInterpType.INTERP_NN)

        self.cp_img = ops.Crop(device="gpu",
                               fill_values=fill_value,
                               out_of_bounds_policy='pad')
        self.cp_ann = ops.Crop(device="gpu",
                               fill_values=0,
                               out_of_bounds_policy='pad')

        self.size = ops.Constant(fdata=size)
        self.pos = ops.Uniform(range=[0, 1])
        self.scale = ops.Uniform(range=[0.667, 1.5])
        self.shape = ops.Shapes(device="gpu")
コード例 #17
0
 def __init__(self, batch_size, num_threads, device_id, use_list):
     super().__init__(batch_size, num_threads, device_id)
     self.input = ops.ExternalSource(device="gpu")
     self.crop = ops.Crop(device="gpu",
                          crop_h=32,
                          crop_w=32,
                          crop_pos_x=0.2,
                          crop_pos_y=0.2)
     self.use_list = use_list
コード例 #18
0
    def __init__(self,
                 batch_size,
                 num_threads,
                 device_id,
                 data_dir,
                 crop,
                 size,
                 mean,
                 std,
                 local_rank=0,
                 world_size=1,
                 dali_cpu=False,
                 shuffle=False,
                 fp16=False):

        # As we're recreating the Pipeline at every epoch, the seed must be -1 (random seed)
        super(HybridValPipe, self).__init__(batch_size,
                                            num_threads,
                                            device_id,
                                            seed=-1)

        # Enabling read_ahead slowed down processing ~40%
        # Note: initial_fill is for the shuffle buffer.  As we only want to see every example once, this is set to 1
        self.input = ops.FileReader(file_root=data_dir,
                                    shard_id=local_rank,
                                    num_shards=world_size,
                                    random_shuffle=shuffle,
                                    initial_fill=1)
        if dali_cpu:
            decode_device = "cpu"
            self.dali_device = "cpu"
            self.crop = ops.Crop(device="cpu", crop=(crop, crop))

        else:
            decode_device = "mixed"
            self.dali_device = "gpu"

            output_dtype = types.FLOAT
            if fp16:
                output_dtype = types.FLOAT16

            self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                                output_dtype=output_dtype,
                                                output_layout=types.NCHW,
                                                crop=(crop, crop),
                                                image_type=types.RGB,
                                                mean=mean,
                                                std=std)

        self.decode = ops.ImageDecoder(device=decode_device,
                                       output_type=types.RGB)

        # Resize to desired size.  To match torchvision dataloader, use triangular interpolation
        self.res = ops.Resize(device=self.dali_device,
                              resize_shorter=size,
                              interp_type=types.INTERP_TRIANGULAR)
コード例 #19
0
 def __init__(self, device, batch_size, layout, iterator, num_threads=1, device_id=0):
     super(CropSequencePipeline, self).__init__(batch_size,
                                                num_threads,
                                                device_id)
     self.device = device
     self.layout = layout
     self.iterator = iterator
     self.inputs = ops.ExternalSource()
     self.crop = ops.Crop(device = self.device,
                          crop = (224, 224),
                          crop_pos_x = 0.3,
                          crop_pos_y = 0.2)
コード例 #20
0
    def __init__(self, params, num_threads, device_id):
        super(DaliPipeline, self).__init__(params.batch_size,
                                           num_threads,
                                           device_id,
                                           seed=12)

        with h5py.File(params.data_path, 'r') as f:
            # load hydro and clean up
            Hydro = f['Hydro'][...]
            self.Hydro = types.Constant(Hydro,
                                        shape=Hydro.shape,
                                        layout="DHWC",
                                        device="cpu")
            del Hydro

            # load nbody and clean up
            Nbody = f['Nbody'][...]
            self.Nbody = types.Constant(Nbody,
                                        shape=Nbody.shape,
                                        layout="DHWC",
                                        device="cpu")
            del Nbody

        #self.ndummy = np.zeros((20, 20, 20, 4), dtype=np.float32)
        #self.hdummy = np.zeros((20, 20, 20, 5), dtype=np.float32)
        #self.Nbody = types.Constant(self.ndummy, shape = self.ndummy.shape, layout = "DHWC", device="cpu")
        #self.Hydro = types.Constant(self.hdummy, shape = self.hdummy.shape, layout = "DHWC", device="cpu")

        #self.Nbody = ops.Constant(fdata = self.ndummy.flatten().tolist(), shape = self.ndummy.shape, layout = "DHWC", device = "cpu")
        #self.Hydro = ops.Constant(fdata = self.hdummy.flatten().tolist(), shape = self.hdummy.shape, layout = "DHWC", device = "cpu")

        self.do_rotate = True if params.rotate_input == 1 else False
        print("Enable Rotation" if self.do_rotate else "Disable Rotation")
        self.rng_angle = ops.Uniform(device="cpu", range=[-1.5, 2.5])
        self.rng_pos = ops.Uniform(device="cpu", range=[0., 1.])
        self.icast = ops.Cast(device="cpu", dtype=types.INT32)
        self.fcast = ops.Cast(device="cpu", dtype=types.FLOAT)
        self.crop = ops.Crop(device="cpu",
                             crop_d=params.data_size,
                             crop_h=params.data_size,
                             crop_w=params.data_size)
        self.rotate1 = ops.Rotate(device="gpu",
                                  axis=(1, 0, 0),
                                  interp_type=types.INTERP_LINEAR)
        self.rotate2 = ops.Rotate(device="gpu",
                                  axis=(0, 1, 0),
                                  interp_type=types.INTERP_LINEAR)
        self.rotate3 = ops.Rotate(device="gpu",
                                  axis=(0, 0, 1),
                                  interp_type=types.INTERP_LINEAR)
        self.transpose = ops.Transpose(device="gpu", perm=[3, 0, 1, 2])
コード例 #21
0
ファイル: test_pipeline.py プロジェクト: xeransis/DALI
 def __init__(self, batch_size, num_threads, device_id):
     super(TransposePipe, self).__init__(batch_size,
                                         num_threads,
                                         device_id,
                                         seed=12)
     self.input = ops.CaffeReader(path=caffe_db_folder,
                                  shard_id=device_id,
                                  num_shards=1)
     self.decode = ops.nvJPEGDecoder(device="mixed",
                                     output_type=types.RGB)
     self.crop = ops.Crop(device="gpu",
                          crop=(224, 224),
                          image_type=types.RGB)
     self.transpose = ops.Transpose(device="gpu", perm=[2, 0, 1])
コード例 #22
0
 def __init__(self, batch_size, num_threads, device_id):
     super(CMNvsCropPipe, self).__init__(batch_size, num_threads, device_id, seed = 12)
     self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = 1)
     self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB)
     self.cmn = ops.CropMirrorNormalize(device = "gpu",
                                         output_layout = types.NHWC,
                                         output_dtype = types.FLOAT,
                                         crop = (224, 224),
                                         image_type = types.RGB,
                                         mean = [0., 0., 0.],
                                         std = [1., 1., 1.])
     self.crop = ops.Crop(device = "gpu",
                          crop = (224, 224),
                          image_type = types.RGB)
     self.uniform = ops.Uniform(range = (0.0, 1.0))
     self.cast = ops.Cast(device = "gpu",
                          dtype = types.INT32)
コード例 #23
0
    def __init__(self,
                 batch_size,
                 device,
                 data_dir,
                 mean,
                 std,
                 device_id=0,
                 shard_id=0,
                 num_shards=1,
                 num_threads=4,
                 seed=0):
        super(DaliTransformsTrainPipeline,
              self).__init__(batch_size, num_threads, device_id, seed)

        # should we make this drive the device flags?
        self.reader = ops.FileReader(file_root=data_dir,
                                     shard_id=shard_id,
                                     num_shards=num_shards,
                                     random_shuffle=True)

        self.decode = ops.ImageDecoder(device='mixed',
                                       output_type=types.RGB,
                                       memory_stats=True)
        self.resize = ops.Resize(device=device,
                                 size=[200, 300],
                                 interp_type=types.INTERP_TRIANGULAR)
        self.centrecrop = ops.Crop(device=device, crop=[100, 100])
        self.randomcrop = ops.RandomResizedCrop(device=device, size=[80, 80])

        self.hz_coin = ops.CoinFlip(probability=0.5)
        self.horizontalflip = ops.Flip(device=device)

        self.rotate_angle = ops.Uniform(range=[-90, 90])
        self.rotate_coin = ops.CoinFlip(probability=0.5)
        self.rotate = ops.Rotate(device=device, keep_size=True)

        self.vt_coin = ops.CoinFlip(probability=0.5)
        self.verticalflip = ops.Flip(device=device, horizontal=0)

        self.normalize = ops.CropMirrorNormalize(device=device,
                                                 dtype=types.FLOAT,
                                                 output_layout=types.NCHW)  #,
        #mean=mean*255, std=std*255)

        #self.normalize = ops.Normalize(device=device, dtype=types.FLOAT)#, mean=mean, stddev=std)
        self.to_int64 = ops.Cast(dtype=types.INT64, device=device)
コード例 #24
0
ファイル: test.py プロジェクト: gddcx/yolov1
 def __init__(self, files, labels):
     super().__init__(256, 8, 0, seed=42)
     self.input = ops.FileReader(files=files,
                                 labels=labels,
                                 random_shuffle=False)
     self.decocer = ops.ImageDecoder(device='mixed', output_type=types.RGB)
     self.resize = ops.Resize(device='gpu', resize_shorter=224)
     self.crop = ops.Crop(device='gpu', crop_h=224, crop_w=224)
     mean = torch.Tensor([0.485, 0.456, 0.406
                          ]).unsqueeze(0).unsqueeze(0) * 255
     std = torch.Tensor([0.229, 0.224, 0.225
                         ]).unsqueeze(0).unsqueeze(0) * 255
     self.normalize = ops.Normalize(axes=[0, 1],
                                    mean=mean,
                                    stddev=std,
                                    device='gpu',
                                    batch=False)
     self.transpose = ops.Transpose(device='gpu', perm=[2, 0, 1])
コード例 #25
0
ファイル: dataloaders.py プロジェクト: zxs789/DALI
 def __init__(self, batch_size, sequence_length, num_threads, device_id,
              files, crop_size):
     super(VideoReaderPipeline, self).__init__(batch_size,
                                               num_threads,
                                               device_id,
                                               seed=12)
     self.reader = ops.VideoReader(device="gpu",
                                   filenames=files,
                                   sequence_length=sequence_length,
                                   normalized=False,
                                   random_shuffle=True,
                                   image_type=types.RGB,
                                   dtype=types.UINT8,
                                   initial_fill=16,
                                   pad_last_batch=True)
     self.crop = ops.Crop(device="gpu", crop=crop_size, dtype=types.FLOAT)
     self.uniform = ops.Uniform(range=(0.0, 1.0))
     self.transpose = ops.Transpose(device="gpu", perm=[3, 0, 1, 2])
コード例 #26
0
ファイル: debug_without_sacred.py プロジェクト: gddcx/yolov1
 def __init__(self, params, device_id, files, labels):
     super().__init__(params.batch_size,
                      params.num_gpus * 8,
                      device_id,
                      seed=params.seed)
     self.input = ops.FileReader(files=files,
                                 labels=labels,
                                 random_shuffle=False)
     self.decocer = ops.ImageDecoder(device='mixed', output_type=types.RGB)
     self.resize = ops.Resize(device='gpu', resize_shorter=224)
     self.crop = ops.Crop(device='gpu', crop_h=224, crop_w=224)
     mean = torch.Tensor(params.mean).unsqueeze(0).unsqueeze(0) * 255
     std = torch.Tensor(params.std).unsqueeze(0).unsqueeze(0) * 255
     self.normalize = ops.Normalize(axes=[0, 1],
                                    mean=mean,
                                    stddev=std,
                                    device='gpu',
                                    batch=False)
     self.transpose = ops.Transpose(device='gpu', perm=[2, 0, 1])
コード例 #27
0
    def __init__(self,
                 file_list,
                 batch_size,
                 sequence_length,
                 num_threads,
                 device_id,
                 crop_size,
                 step=-1,
                 stride=1,
                 random_shuffle=True):
        super(VideoReaderPipeline, self).__init__(batch_size,
                                                  num_threads,
                                                  device_id,
                                                  seed=12)

        # Define VideoReader
        self.reader = ops.VideoReader(device="gpu",
                                      file_list=file_list,
                                      sequence_length=sequence_length,
                                      normalized=False,
                                      random_shuffle=random_shuffle,
                                      image_type=types.RGB,
                                      dtype=types.UINT8,
                                      step=step,
                                      stride=stride,
                                      initial_fill=16)

        # Define crop, mirror and normalisation operations to apply to every sequence
        self.crop = ops.Crop(device="gpu",
                             crop=crop_size,
                             output_dtype=types.FLOAT)

        self.transpose = ops.Transpose(device="gpu", perm=[0, 3, 1,
                                                           2])  # [N F C H W]

        self.uniform = ops.Uniform(range=(0.2, 1.0))  # used for random crop
コード例 #28
0
 def __init__(self, params, num_threads, device_id):
     super(DaliPipeline, self).__init__(params.batch_size,
                                        num_threads,
                                        device_id,
                                        seed=12)
     dii = DaliInputIterator(params)
     self.no_copy = params.no_copy
     if self.no_copy:
         print("Use Zero Copy ES")
     self.source = ops.ExternalSource(source = dii, num_outputs = 2, layout = ["DHWC", "DHWC"], no_copy = self.no_copy)
     self.do_rotate = True if params.rotate_input==1 else False
     print("Enable Rotation" if self.do_rotate else "Disable Rotation")
     self.rng_angle = ops.Uniform(device = "cpu",
                                  range = [0., 180.])
     self.rng_axis = ops.Uniform(device = "cpu",
                                 range = [-1., 1.],
                                 shape=(3))
     self.rotate = ops.Rotate(device = "gpu",
                              interp_type = types.INTERP_LINEAR,
                              keep_size=True)
     self.transpose = ops.Transpose(device = "gpu",
                                    perm=[3,0,1,2])
     self.crop = ops.Crop(device = "gpu",
                          crop = (dii.size, dii.size, dii.size))
コード例 #29
0
    def __init__(self, batch_size, sequence_length, num_threads, files, gt_files, \
        crop_size, random_shuffle=True, step=-1, device_id=-1, seed=12):
        super(VideoReaderPipeline, self).__init__(batch_size,
                                                  num_threads,
                                                  device_id,
                                                  seed=seed)
        #Define VideoReader
        self.reader = ops.VideoReader(device="gpu", \
                filenames=files, \
                sequence_length=sequence_length, \
                normalized=False, \
                random_shuffle=random_shuffle, \
                image_type=types.RGB, \
                dtype=types.UINT8, \
                step=step, \
                initial_fill=16,
                seed=seed)


        self.gt_reader = ops.VideoReader(device="gpu", \
                filenames=gt_files, \
                sequence_length=sequence_length, \
                normalized=False, \
                random_shuffle=random_shuffle, \
                image_type=types.RGB, \
                dtype=types.UINT8, \
                step=step, \
                initial_fill=16,
                seed=seed)

        # Define crop and permute operations to apply to every sequence
        self.crop = ops.Crop(device="gpu", \
                crop=[crop_size, crop_size], \
                output_dtype=types.FLOAT)
        self.uniform = ops.Uniform(range=(0.0, 1.0))  # used for random crop
        self.transpose = ops.Transpose(device="gpu", perm=[3, 0, 1, 2])
コード例 #30
0
    def __init__(self,
                 batch_size,
                 num_threads,
                 device_id,
                 image_size,
                 tfrecord_path,
                 index_path,
                 config,
                 shard_id=0):

        super(CommonPipeline, self).__init__(batch_size, num_threads,
                                             device_id)

        self.image_size = image_size
        self.input = self._input(tfrecord_path, index_path, shard_id=shard_id)
        # The nvjpeg decoder throws an error for some unsupported jpegs.
        # until this is fixed, we'll use the host decoder, which runs on the
        # CPU.
        # self.decode = ops.nvJPEGDecoder(device="mixed",
        #                                 output_type=types.RGB)
        self.decode = ops.HostDecoder(device="cpu", output_type=types.RGB)
        self.resize = ops.Resize(device="gpu",
                                 image_type=types.RGB,
                                 interp_type=types.INTERP_LINEAR,
                                 resize_x=image_size,
                                 resize_y=image_size)

        self.resize_large = ops.Resize(device="gpu",
                                       image_type=types.RGB,
                                       interp_type=types.INTERP_LINEAR,
                                       resize_x=image_size * config.zoom_scale,
                                       resize_y=image_size * config.zoom_scale)

        self.color_twist = ops.ColorTwist(device="gpu", )
        self.crop_mirror_normalize = ops.CropMirrorNormalize(
            device="gpu",
            crop=image_size,
            output_dtype=types.FLOAT,
            image_type=types.RGB,
            output_layout=types.DALITensorLayout.NHWC,
            mean=122.5,
            std=255.0)

        self.crop = ops.Crop(
            device="gpu",
            crop=image_size,
        )

        self.cast = ops.Cast(device="gpu", dtype=types.DALIDataType.INT64)
        self.rotate = ops.Rotate(device="gpu", fill_value=0)
        self.flip = ops.Flip(device="gpu")

        self.coin = ops.CoinFlip(probability=0.5)
        self.rotate_rng = ops.Uniform(range=(config.rotate_angle_min,
                                             config.rotate_angle_max))
        self.crop_x_rng = ops.Uniform(range=(0.0, config.crop_x_max))
        self.crop_y_rng = ops.Uniform(range=(0.0, config.crop_y_max))
        self.hue_rng = ops.Uniform(range=(config.hue_min, config.hue_max))
        self.contrast_rng = ops.Uniform(range=(config.contrast_min,
                                               config.contrast_max))
        self.saturation_rng = ops.Uniform(range=(config.saturation_min,
                                                 config.saturation_max))
        self.brightness_rng = ops.Uniform(range=(config.brightness_min,
                                                 config.brightness_max))

        self.iter = 0