def __init__(self, args): self.config = args.config if not args.use_pretrain: if args.progressive_layer_drop: print("BertConfigPreLnLayerDrop") from nvidia.modelingpreln_layerdrop import BertForPreTrainingPreLN, BertForMaskedLM, BertConfig else: from nvidia.modelingpreln import BertForPreTrainingPreLN, BertForMaskedLM, BertConfig bert_config = BertConfig(**self.config["bert_model_config"]) bert_config.vocab_size = len(args.tokenizer.vocab) # Padding for divisibility by 8 if bert_config.vocab_size % 8 != 0: bert_config.vocab_size += 8 - (bert_config.vocab_size % 8) print("VOCAB SIZE:", bert_config.vocab_size) self.network = BertForPreTrainingPreLN(bert_config, args) # self.network = BertForMaskedLM(bert_config) # something else should be changes for this to work # Use pretrained bert weights else: self.bert_encoder = BertModel.from_pretrained( self.config['bert_model_file'], cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank)) bert_config = self.bert_encoder.config self.device = None
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) # Other parameters parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3") parser.add_argument( "--max_seq_length", default=128, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--deepscale', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") parser.add_argument("--model_file", type=str, default="0", help="Path to the Pretrained BERT Encoder File.") parser.add_argument('--random', default=False, action='store_true', help="Whether to fientune for random initialization") parser.add_argument('--focal', default=False, action='store_true', help="Whether to use Focal Loss for finetuning.") parser.add_argument('--gamma', type=float, default=0.5, help="Gamma parameter to be used in focal loss.") parser.add_argument('--deepspeed_sparse_attention', default=False, action='store_true', help='Use DeepSpeed sparse self attention.') parser.add_argument('--deepspeed_transformer_kernel', default=False, action='store_true', help='Use DeepSpeed transformer kernel to accelerate.') parser.add_argument( '--progressive_layer_drop', default=False, action='store_true', help="Whether to enable progressive layer dropping or not") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mnli-mm": MnliMismatchedProcessor, "mrpc": MrpcProcessor, "sst-2": Sst2Processor, "sts-b": StsbProcessor, "qqp": QqpProcessor, "qnli": QnliProcessor, "rte": RteProcessor, "wnli": WnliProcessor, } output_modes = { "cola": "classification", "mnli": "classification", "mrpc": "classification", "sst-2": "classification", "sts-b": "regression", "qqp": "classification", "qnli": "classification", "rte": "classification", "wnli": "classification", } if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps args.seed = random.randint(1, 1000) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval: raise ValueError( "At least one of `do_train` or `do_eval` must be True.") if (args.local_rank == -1 or torch.distributed.get_rank() == 0): # if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: # raise ValueError( # "Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) if args.local_rank != -1: torch.distributed.barrier() task_name = args.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() output_mode = output_modes[task_name] label_list = processor.get_labels() num_labels = len(label_list) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) train_examples = None num_train_optimization_steps = None if args.do_train: train_examples = processor.get_train_examples(args.data_dir) num_train_optimization_steps = int( len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size( ) # Prepare model cache_dir = args.cache_dir if args.cache_dir else os.path.join( str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format( args.local_rank)) bert_base_model_config = { "vocab_size_or_config_json_file": 119547, "hidden_size": 768, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02 } if args.progressive_layer_drop: print("BertBaseConfigPreLnLayerDrop") from nvidia.modelingpreln_layerdrop import BertForSequenceClassification, BertConfig else: from nvidia.modelingpreln import BertForSequenceClassification, BertConfig bert_config = BertConfig(**bert_base_model_config) bert_config.vocab_size = len(tokenizer.vocab) # Padding for divisibility by 8 if bert_config.vocab_size % 8 != 0: bert_config.vocab_size += 8 - (bert_config.vocab_size % 8) model = BertForSequenceClassification(args, bert_config, num_labels=num_labels) if args.model_file is not "0": logger.info(f"Loading Pretrained Bert Encoder from: {args.model_file}") # bert_state_dict = torch.load(args.model_file) # model.bert.load_state_dict(bert_state_dict) checkpoint_state_dict = torch.load(args.model_file, map_location=torch.device("cpu")) if 'module' in checkpoint_state_dict: logger.info('Loading DeepSpeed v2.0 style checkpoint') model.load_state_dict(checkpoint_state_dict['module'], strict=False) elif 'model_state_dict' in checkpoint_state_dict: model.load_state_dict(checkpoint_state_dict['model_state_dict'], strict=False) else: raise ValueError("Unable to find model state in checkpoint") logger.info(f"Pretrained Bert Encoder Loaded from: {args.model_file}") if args.random: logger.info("USING RANDOM INITIALISATION FOR FINETUNING") model.apply(model.init_bert_weights) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: if args.deepscale: print("Enabling DeepScale") from deepscale.distributed_apex import DistributedDataParallel as DDP else: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) global_step = 0 nb_tr_steps = 0 tr_loss = 0 if args.do_train: train_features = convert_examples_to_features(train_examples, label_list, args.max_seq_length, tokenizer, output_mode) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long) elif output_mode == "regression": if args.fp16: all_label_ids = torch.tensor( [f.label_id for f in train_features], dtype=torch.half) else: all_label_ids = torch.tensor( [f.label_id for f in train_features], dtype=torch.float) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch # define a new function to compute loss values for both output_modes logits = model(input_ids, segment_ids, input_mask, labels=None) if output_mode == "classification": if args.focal: loss_fct = FocalLoss(class_num=num_labels, gamma=args.gamma) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) elif output_mode == "regression": loss_fct = MSELoss() loss = loss_fct(logits.view(-1), label_ids.view(-1)) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.deepscale and args.local_rank != -1: model.disable_need_reduction() if (step + 1) % args.gradient_accumulation_steps == 0: model.enable_need_reduction() if args.fp16: optimizer.backward(loss) else: loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * \ warmup_linear( global_step/num_train_optimization_steps, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, output_mode) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) elif output_mode == "regression": all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss = 0 nb_eval_steps = 0 preds = [] for input_ids, input_mask, segment_ids, label_ids in tqdm( eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, segment_ids, input_mask, labels=None) # create eval loss and other metric required by the task if output_mode == "classification": if args.focal: loss_fct = FocalLoss(class_num=num_labels, gamma=args.gamma) else: loss_fct = CrossEntropyLoss() tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) elif output_mode == "regression": loss_fct = MSELoss() print(logits.type()) print(label_ids.type()) if task_name == "sts-b": tmp_eval_loss = loss_fct(logits.float().view(-1), label_ids.view(-1)) else: tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1)) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if len(preds) == 0: preds.append(logits.detach().cpu().numpy()) else: preds[0] = np.append(preds[0], logits.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = preds[0] if output_mode == "classification": preds = np.argmax(preds, axis=1) elif output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(task_name, preds, all_label_ids.numpy()) loss = tr_loss / nb_tr_steps if args.do_train else None result['eval_loss'] = eval_loss result['global_step'] = global_step result['loss'] = loss output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) # hack for MNLI-MM if task_name == "mnli": task_name = "mnli-mm" processor = processors[task_name]() if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train: raise ValueError( "Output directory ({}{}) already exists and is not empty.". format(args.output_dir, '-MM')) if not os.path.exists(args.output_dir + '-MM'): os.makedirs(args.output_dir + '-MM') eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer, output_mode) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor( [f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor( [f.segment_ids for f in eval_features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss = 0 nb_eval_steps = 0 preds = [] for input_ids, input_mask, segment_ids, label_ids in tqdm( eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, segment_ids, input_mask, labels=None) if args.focal: loss_fct = FocalLoss(class_num=num_labels, gamma=args.gamma) else: loss_fct = CrossEntropyLoss() tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if len(preds) == 0: preds.append(logits.detach().cpu().numpy()) else: preds[0] = np.append(preds[0], logits.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = preds[0] preds = np.argmax(preds, axis=1) result = compute_metrics(task_name, preds, all_label_ids.numpy()) loss = tr_loss / nb_tr_steps if args.do_train else None result['eval_loss'] = eval_loss result['global_step'] = global_step result['loss'] = loss output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key])))