コード例 #1
0
def test_submission_filename():
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=2,
                                  class_sep=0.98,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'objective': 'binary', 'max_depth': 8}

    with get_temp_directory() as temp_path:
        run_experiment(params,
                       X_train,
                       y_train,
                       X_test,
                       temp_path,
                       submission_filename='sub.csv')

        df = pd.read_csv(os.path.join(temp_path, 'sub.csv'))
        assert list(df.columns) == ['id', 'target']
コード例 #2
0
def test_experiment_mlflow(tmpdir_name):
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=2,
                                  class_sep=0.98,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'objective': 'binary', 'max_depth': 8}

    run_experiment(params,
                   X_train,
                   y_train,
                   None,
                   tmpdir_name,
                   with_mlflow=True)

    _check_file_exists(tmpdir_name, with_mlflow=True)

    # test if output files are also stored in the mlflow artifact uri
    with open(os.path.join(tmpdir_name, 'mlflow.json'), 'r') as f:
        mlflow_meta = json.load(f)
        p = unquote(urlparse(mlflow_meta['artifact_uri']).path)
        if os.name == 'nt' and p.startswith("/"):
            p = p[1:]
        _check_file_exists(p, with_mlflow=False)
コード例 #3
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_experiment_fit_params_callback(tmpdir_name):
    X, y = make_classification_df(n_samples=1024, n_num_features=10, n_cat_features=2,
                                  class_sep=0.98, random_state=0, id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

    params = {
        'objective': 'binary',
        'max_depth': 8,
        'n_estimators': 500
    }

    sample_weights = np.random.randint(1, 10, size=len(X_train))
    sample_weights = sample_weights / sample_weights.sum()

    def fit_params(n: int, train_index: List[int], valid_index: List[int]):
        return {
            'early_stopping_rounds': 100,
            'sample_weight': list(sample_weights[train_index]),
            'eval_sample_weight': [list(sample_weights[valid_index])]
        }

    result1 = run_experiment(params, X_train, y_train, X_test,
                             os.path.join(tmpdir_name, '1'), fit_params=fit_params)

    result2 = run_experiment(params, X_train, y_train, X_test,
                             os.path.join(tmpdir_name, '2'))

    assert result1.metrics[-1] != result2.metrics[-1]
コード例 #4
0
def test_experiment_fit_params(tmpdir_name):
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=2,
                                  class_sep=0.98,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'objective': 'binary', 'max_depth': 8, 'n_estimators': 500}

    result1 = run_experiment(params,
                             X_train,
                             y_train,
                             X_test,
                             os.path.join(tmpdir_name, '1'),
                             fit_params={'early_stopping_rounds': None})
    result2 = run_experiment(params,
                             X_train,
                             y_train,
                             X_test,
                             os.path.join(tmpdir_name, '2'),
                             fit_params={'early_stopping_rounds': 5})

    assert result1.models[-1].booster_.num_trees() == params['n_estimators']
    assert result2.models[-1].booster_.num_trees() < params['n_estimators']
コード例 #5
0
def test_with_feature_attachment():
    X, y = make_classification_df(n_num_features=5, class_sep=0.7)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }

    with get_temp_directory() as temp_feature_path:
        cols = list(X.columns)
        for i, c in enumerate(cols):
            if X.shape[1] == 1:
                break
            save_feature(X[[c]], i, directory=temp_feature_path)
            X.drop(c, axis=1, inplace=True)

        X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=False)

        with get_temp_directory() as temp_path:
            result_wo_feature = run_experiment(params, X_train, y_train, X_test, logging_directory=temp_path)

        with get_temp_directory() as temp_path:
            result_w_feature = run_experiment(params, X_train, y_train, X_test, logging_directory=temp_path,
                                              feature_list=[0, 1, 2, 3], feature_directory=temp_feature_path)

        assert result_w_feature.metrics[-1] > result_wo_feature.metrics[-1]
コード例 #6
0
def test_with_rare_categories():
    X = pd.DataFrame({
        'x0': [None] * 100,
        'x1':
        np.random.choice([np.inf, -np.inf], size=100),
        'x2': ['nan'] + [None] * 99,
        'x3':
        np.concatenate([
            np.random.choice(['A', 'B'], size=50),
            np.random.choice(['C', 'D', 'na'], size=50)
        ])
    })

    y = pd.Series(np.random.choice([0, 1], size=100), name='y')

    params = {
        'lgbm': {
            'objective': 'binary',
            'max_depth': 8
        },
        'xgb': {
            'objective': 'binary:logistic',
            'max_depth': 8
        },
        'cat': {
            'loss_function': 'Logloss',
            'max_depth': 8
        }
    }

    for cat_cast in (True, False):
        X_ = X.copy()
        y_ = y.copy()
        if cat_cast:
            for c in X.columns:
                X_[c] = X_[c].astype('category')
            X_ = X_.iloc[:50, :]
            y_ = y_.iloc[:50]

        X_train, X_test, y_train, y_test = train_test_split(X_,
                                                            y_,
                                                            shuffle=False,
                                                            test_size=0.5)

        for algorithm in ('cat', 'xgb', 'lgbm'):
            with get_temp_directory() as temp_path:
                run_experiment(params[algorithm],
                               X_train,
                               y_train,
                               X_test,
                               algorithm_type=algorithm,
                               logging_directory=temp_path,
                               with_mlflow=True,
                               with_auto_prep=True,
                               categorical_feature=['x0', 'x1', 'x2', 'x3'])
コード例 #7
0
def test_log_params(tmpdir_name):
    params = {'objective': 'binary', 'max_depth': 8}
    X, y = make_classification_df()

    run_experiment(params, X, y, logging_directory=tmpdir_name)

    with open(os.path.join(tmpdir_name, 'params.json'), 'r') as f:
        recorded_params = json.load(f)
        assert recorded_params['model_params.max_depth'] == 8
        assert recorded_params['model_params.objective'] == 'binary'
        assert recorded_params['fit_params'] == 'None'
コード例 #8
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_custom_experiment(tmpdir_name):
    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    with Experiment(tmpdir_name, with_mlflow=True) as e:
        run_experiment(params, X, y, logging_directory='foobar', inherit_experiment=e)

    # all files are logged into e.logging_directory, instead of 'foobar'
    _check_file_exists(tmpdir_name, with_mlflow=True)
コード例 #9
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_with_long_params(tmpdir_name):
    X, y = make_classification_df(1024, n_num_features=5, n_cat_features=400)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }

    X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=False)

    # just to make sure experiment finish
    run_experiment(params, X_train, y_train, X_test,
                   logging_directory=tmpdir_name, with_mlflow=True)
コード例 #10
0
def test_experiment_sklearn_regressor(tmpdir_name):
    X, y = make_regression_df(n_samples=1024,
                              n_num_features=10,
                              n_cat_features=0,
                              random_state=0,
                              id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'fit_intercept': True}

    result = run_experiment(params,
                            X_train,
                            y_train,
                            X_test,
                            tmpdir_name,
                            with_auto_prep=False,
                            algorithm_type=LinearRegression)

    assert len(np.unique(
        result.oof_prediction)) > 5  # making sure prediction is not binarized
    assert len(np.unique(result.test_prediction)) > 5
    assert mean_squared_error(y_train,
                              result.oof_prediction) == result.metrics[-1]

    _check_file_exists(tmpdir_name)
コード例 #11
0
def test_experiment_cat_regressor():
    X, y = make_regression_df(n_samples=1024,
                              n_num_features=10,
                              n_cat_features=2,
                              random_state=0,
                              id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'max_depth': 8, 'num_boost_round': 100}

    with get_temp_directory() as temp_path:
        result = run_experiment(params,
                                X_train,
                                y_train,
                                X_test,
                                temp_path,
                                algorithm_type='cat')

        assert mean_squared_error(y_train,
                                  result.oof_prediction) == result.metrics[-1]
        _check_file_exists(
            temp_path,
            ('oof_prediction.npy', 'test_prediction.npy', 'metrics.txt'))
コード例 #12
0
def test_experiment_manual_cv_group():
    df1 = pd.DataFrame()
    df1['x'] = np.random.randint(0, 10, size=1000)
    df1['y'] = df1['x'] > 5
    df1['grp'] = 0

    df2 = pd.DataFrame()
    df2['x'] = np.random.randint(0, 10, size=100)
    df2['y'] = df2['x'] <= 5
    df2['grp'] = 1

    X = pd.concat([df1, df2]).reset_index(drop=True)
    y = X['y']

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

    grp = X_train['grp']
    X_train = X_train.drop(['y', 'grp'], axis=1)
    X_test = X_test.drop(['y', 'grp'], axis=1)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }

    with get_temp_directory() as temp_path:
        result = run_experiment(params, X_train, y_train, X_test, temp_path, cv=GroupKFold(2), groups=grp)
        assert result.metrics[-1] < 0.7
コード例 #13
0
def test_experiment_sample_submission_multiclass():
    X, y = make_classification_df(n_classes=5)
    X_train, X_test, y_train, y_test = train_test_split(X, y)

    sample_df = pd.DataFrame()
    sample_df['target_id_abc'] = np.arange(len(y_test)) + 10000
    for i in range(5):
        sample_df['target_class_{}'.format(i)] = 0

    params = {
        'objective': 'multiclass',
        'max_depth': 8
    }

    with get_temp_directory() as temp_path:
        result = run_experiment(params, X_train, y_train, X_test, temp_path, sample_submission=sample_df)

        assert list(result.submission_df.columns) == ['target_id_abc',
                                                      'target_class_0',
                                                      'target_class_1',
                                                      'target_class_2',
                                                      'target_class_3',
                                                      'target_class_4'
                                                      ]
        log_loss_trianed = log_loss(y_test, result.submission_df.drop('target_id_abc', axis=1), labels=[0, 1, 2, 3, 4])
        log_loss_default = log_loss(y_test, np.full((len(y_test), 5), 0.2), labels=[0, 1, 2, 3, 4])
        assert log_loss_trianed < log_loss_default
コード例 #14
0
def test_experiment_lgb_regressor():
    X, y = make_regression_df(n_samples=1024,
                              n_num_features=10,
                              n_cat_features=2,
                              random_state=0,
                              id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'objective': 'regression', 'max_depth': 8}

    with get_temp_directory() as temp_path:
        result = run_experiment(params, X_train, y_train, X_test, temp_path)

        assert len(np.unique(result.oof_prediction)
                   ) > 5  # making sure prediction is not binarized
        assert len(np.unique(result.test_prediction)) > 5
        assert mean_squared_error(y_train,
                                  result.oof_prediction) == result.metrics[-1]

        _check_file_exists(
            temp_path,
            ('oof_prediction.npy', 'test_prediction.npy', 'metrics.txt'))
コード例 #15
0
ファイル: test_averaging.py プロジェクト: tatsuya068/nyaggle
def test_averaging():
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=2,
                                  class_sep=0.98,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'objective': 'binary', 'max_depth': 8}

    with tempfile.TemporaryDirectory() as temp_path:
        for i in range(3):
            params['seed'] = i
            ret_single = run_experiment(
                params, X_train, y_train, X_test,
                os.path.join(temp_path, 'seed{}'.format(i)))

        df = average_results(
            [os.path.join(temp_path, 'seed{}'.format(i)) for i in range(3)],
            os.path.join(temp_path, 'average.csv'))

        score = roc_auc_score(y_test, df[df.columns[-1]])
        assert score >= 0.85

        assert score >= roc_auc_score(y_test, ret_single.test_prediction)
コード例 #16
0
def test_experiment_lgb_multiclass():
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=2,
                                  n_classes=5,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'objective': 'multiclass', 'max_depth': 8}

    with get_temp_directory() as temp_path:
        result = run_experiment(params, X_train, y_train, X_test, temp_path)

        assert len(np.unique(result.oof_prediction[:, 0])
                   ) > 5  # making sure prediction is not binarized
        assert len(np.unique(result.test_prediction[:, 0])) > 5
        assert result.oof_prediction.shape == (len(y_train), 5)
        assert result.test_prediction.shape == (len(y_test), 5)

        _check_file_exists(
            temp_path,
            ('oof_prediction.npy', 'test_prediction.npy', 'metrics.txt'))
コード例 #17
0
def test_experiment_xgb_regressor(tmpdir_name):
    X, y = make_regression_df(n_samples=1024,
                              n_num_features=10,
                              n_cat_features=2,
                              random_state=0,
                              id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'max_depth': 8, 'num_boost_round': 100}

    result = run_experiment(params,
                            X_train,
                            y_train,
                            X_test,
                            tmpdir_name,
                            algorithm_type='xgb',
                            with_auto_prep=True)

    assert mean_squared_error(y_train,
                              result.oof_prediction) == result.metrics[-1]
    _check_file_exists(tmpdir_name)
コード例 #18
0
def test_experiment_cat_custom_eval(tmpdir_name):
    X, y = make_regression_df(n_samples=1024,
                              n_num_features=10,
                              n_cat_features=2,
                              random_state=0,
                              id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'max_depth': 8, 'num_boost_round': 100, 'eval_metric': 'MAE'}

    result = run_experiment(params,
                            X_train,
                            y_train,
                            X_test,
                            tmpdir_name,
                            algorithm_type='cat',
                            eval_func=mean_absolute_error)

    assert mean_absolute_error(y_train,
                               result.oof_prediction) == result.metrics[-1]
    _check_file_exists(tmpdir_name)
コード例 #19
0
def test_experiment_sklearn_multiclass(tmpdir_name):
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=0,
                                  n_classes=5,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'n_neighbors': 10}

    result = run_experiment(params,
                            X_train,
                            y_train,
                            X_test,
                            tmpdir_name,
                            algorithm_type=KNeighborsClassifier,
                            with_auto_prep=False)

    assert len(np.unique(result.oof_prediction[:, 0])
               ) > 5  # making sure prediction is not binarized
    assert len(np.unique(result.test_prediction[:, 0])) > 5
    assert result.oof_prediction.shape == (len(y_train), 5)
    assert result.test_prediction.shape == (len(y_test), 5)

    _check_file_exists(tmpdir_name)
コード例 #20
0
def test_experiment_lgb_classifier(tmpdir_name):
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=2,
                                  class_sep=0.98,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'objective': 'binary', 'max_depth': 8}

    result = run_experiment(params,
                            X_train,
                            y_train,
                            X_test,
                            tmpdir_name,
                            eval_func=roc_auc_score)

    assert len(np.unique(
        result.oof_prediction)) > 5  # making sure prediction is not binarized
    assert len(np.unique(result.test_prediction)) > 5
    assert roc_auc_score(y_train, result.oof_prediction) >= 0.9
    assert roc_auc_score(y_test, result.test_prediction) >= 0.9

    _check_file_exists(tmpdir_name)
コード例 #21
0
def test_experiment_sklearn_classifier(tmpdir_name):
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=0,
                                  class_sep=0.98,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'C': 0.1}

    result = run_experiment(params,
                            X_train,
                            y_train,
                            X_test,
                            tmpdir_name,
                            eval_func=roc_auc_score,
                            algorithm_type=LogisticRegression,
                            with_auto_prep=False)

    assert len(np.unique(
        result.oof_prediction)) > 5  # making sure prediction is not binarized
    assert len(np.unique(result.test_prediction)) > 5
    assert roc_auc_score(y_train, result.oof_prediction) >= 0.8
    assert roc_auc_score(y_test, result.test_prediction) >= 0.8

    _check_file_exists(tmpdir_name)
コード例 #22
0
def nyaggle(tuning, type_of_target):
    load_dotenv()

    data = pd.read_pickle("./resources/preprocess/preprocessed_data.pkl")
    if tuning == "true":
        with_auto_hpo = True
    elif tuning == "false":
        with_auto_hpo = False
    else:
        raise ValueError("miss tuning type! Only support `true` or `false`!")

    fit_params = {
        "eval_metric": "auc",
        "early_stopping_rounds": 100,
        "verbose": 100
    }

    model_params = {
        "seed": os.environ["RANDOM_STATE"],
        "learning_rate": 0.01,
        "n_estimators": 100000,
        "verbose_evals": 100,
        #===========================================
        "lambda_l1": 0.008326236276901882,
        "lambda_l2": 6.599312336484268,
        "num_leaves": 3,
        "feature_fraction": 0.5,
        "bagging_fraction": 0.9094149008241834,
        "bagging_freq": 5,
        "min_child_samples": 50,
    }

    run_experiment(
        model_params=model_params,
        X_train=data.train_X,
        y=data.train_y,
        X_test=data.test_X,
        eval_func=roc_auc_score,
        type_of_target=type_of_target,
        cv=data.fold,
        fit_params=fit_params,
        with_auto_hpo=with_auto_hpo,
        sample_submission=pd.read_csv(
            "../input/cat-in-the-dat-ii/sample_submission.csv"),
        submission_filename="submission.csv",
        with_mlflow=True,
    )
コード例 #23
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_inherit_outer_scope_run(tmpdir_name):
    mlflow.start_run()
    mlflow.log_param('foo', 1)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name)

    assert mlflow.active_run() is not None  # still valid

    client = mlflow.tracking.MlflowClient()
    data = client.get_run(mlflow.active_run().info.run_id).data

    assert data.metrics['Overall'] > 0  # recorded

    mlflow.end_run()
コード例 #24
0
def test_experiment_already_exists(tmpdir_name):
    X, y = make_classification_df(n_samples=1024,
                                  n_num_features=10,
                                  n_cat_features=2,
                                  class_sep=0.98,
                                  random_state=0,
                                  id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)

    params = {'objective': 'binary', 'max_depth': 8}

    run_experiment(params, X_train, y_train, None, tmpdir_name)

    # result is not overwrited by default
    run_experiment(params,
                   X_train,
                   y_train,
                   None,
                   tmpdir_name,
                   if_exists='replace')

    with pytest.raises(Exception):
        run_experiment(params, X_train, y_train, None, tmpdir_name)
コード例 #25
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_experiment_manual_cv_int(tmpdir_name):
    X, y = make_classification_df(n_samples=1024, n_num_features=10, n_cat_features=2,
                                  class_sep=0.98, random_state=0, id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }

    result = run_experiment(params, X_train, y_train, None, tmpdir_name, cv=KFold(2))
    assert len(result.models) == 2
    assert len(result.metrics) == 2 + 1
コード例 #26
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_experiment_without_test_data(tmpdir_name):
    X, y = make_classification_df(n_samples=1024, n_num_features=10, n_cat_features=2,
                                  class_sep=0.98, random_state=0, id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }

    result = run_experiment(params, X_train, y_train, None, tmpdir_name)

    assert roc_auc_score(y_train, result.oof_prediction) >= 0.9
    _check_file_exists(tmpdir_name)
コード例 #27
0
def test_experiment_manual_cv_kfold():
    X, y = make_classification_df(n_samples=1024, n_num_features=10, n_cat_features=2,
                                  class_sep=0.98, random_state=0, id_column='user_id')

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }

    with get_temp_directory() as temp_path:
        result = run_experiment(params, X_train, y_train, None, temp_path, cv=KFold(4))
        assert len(result.models) == 4
        assert len(result.metrics) == 4 + 1
コード例 #28
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_experiment_sample_submission_binary(tmpdir_name):
    X, y = make_classification_df()
    X_train, X_test, y_train, y_test = train_test_split(X, y)

    sample_df = pd.DataFrame()
    sample_df['target_id_abc'] = np.arange(len(y_test)) + 10000
    sample_df['target_value_abc'] = 0

    params = {
        'objective': 'binary',
        'max_depth': 8
    }

    result = run_experiment(params, X_train, y_train, X_test, tmpdir_name, sample_submission=sample_df)

    assert list(result.submission_df.columns) == ['target_id_abc', 'target_value_abc']
    assert roc_auc_score(y_test, result.submission_df['target_value_abc']) > 0.8
コード例 #29
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_experiment_cat_multiclass(tmpdir_name):
    X, y = make_classification_df(n_samples=1024, n_num_features=10, n_cat_features=2, n_classes=5,
                                  class_sep=0.98, random_state=0, id_column='user_id', target_name='tgt')

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

    params = {
        'max_depth': 8,
        'num_boost_round': 100
    }

    result = run_experiment(params, X_train, y_train, X_test, tmpdir_name, algorithm_type='cat',
                            type_of_target='multiclass', submission_filename='submission.csv', with_auto_prep=True)

    assert result.oof_prediction.shape == (len(y_train), 5)
    assert result.test_prediction.shape == (len(y_test), 5)

    assert list(pd.read_csv(os.path.join(tmpdir_name, 'submission.csv')).columns) == ['id', '0', '1', '2', '3', '4']

    _check_file_exists(tmpdir_name, submission_filename='submission.csv')
コード例 #30
0
ファイル: test_run.py プロジェクト: wakamezake/nyaggle
def test_ignore_errors_in_mlflow_params(tmpdir_name):
    mlflow.start_run()
    mlflow.log_param('features', 'ABC')
    mlflow.log_metric('Overall', -99)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    result = run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name, feature_list=[])

    client = mlflow.tracking.MlflowClient()
    data = client.get_run(mlflow.active_run().info.run_id).data

    assert data.metrics['Overall'] == result.metrics[-1]
    assert data.params['features'] == 'ABC'  # params cannot be overwritten

    mlflow.end_run()