コード例 #1
0
ファイル: lenet.py プロジェクト: nanaya-tachibana/handwritten
    def _initialize_theta(self):
        filter_shape = self.filter_shape
        image_shape = self.image_shape
        poolsize = self.poolsize

        conv_in = np.prod(filter_shape[1:])
        conv_out = filter_shape[0] * np.prod(filter_shape[2:])
        pool_out = conv_out / poolsize**2

        conv_map_size = image_shape[-1] - filter_shape[-1] + 1
        assert conv_map_size > 0
        pool_map_size = int(conv_map_size / poolsize)
        assert pool_map_size > 0

        self.conv_w = shared(
            nn_random_paramters(conv_in, conv_out, shape=filter_shape))
        self.conv_b = shared(
            nn_random_paramters(conv_in, conv_out,
                                shape=(filter_shape[0], 1, 1)))
        self.pool_w = shared(
            nn_random_paramters(conv_out, pool_out,
                                shape=(filter_shape[0], 1, 1)))
        self.pool_b = shared(
            nn_random_paramters(conv_out, pool_out,
                                shape=(filter_shape[0], 1, 1)))
        self.output_shape = (image_shape[0], filter_shape[0],
                             pool_map_size, pool_map_size)

        return [self.conv_w, self.conv_b, self.pool_w, self.pool_b]
コード例 #2
0
ファイル: base.py プロジェクト: nanaya-tachibana/handwritten
    def _initialize_theta(self):
        """Return a set value which can be used to initialize weights.

        Override this function to use other initial value.
        """
        return nn_random_paramters(self.n_in+1, self.n_out)