コード例 #1
0
 def dump_config(self):
     config_vars = [var for var in self.config.__dir__() if var.isupper()]
     config_dict = {}
     for var in config_vars:
         val = getattr(self.config, var)
         if val.__class__.__name__ == "ndarray":
             val = val.tolist()
         config_dict[var] = val
     info_dict = {}
     info_dict["config"] = config_dict
     info_dict["mode"] = self.mode
     exten_obj = pml.Extension(anytypeobjs_=[str(info_dict)], name="config")
     self.pmml_obj.DeepNetwork[0].Extension = [exten_obj]
コード例 #2
0
def rbst_scaler(trfm, col_names):
    """

    Parameters
    ----------
    trfm :
        Contains the Sklearn's RobustScaler preprocessing instance
    col_names : list
        Contains list of feature/column names.
        The column names may represent the names of preprocessed attributes.

    Returns
    -------
    pp_dict : dictionary
        Returns a dictionary that contains attributes related to RobustScaler preprocessing.

    """
    pp_dict = dict()
    derived_flds = list()
    derived_colnames = get_derived_colnames('robustScaler', col_names)
    for col_name_idx in range(len(col_names)):
        if (col_names[col_name_idx] not in exception_cols):
            apply_inner = list()
            apply_inner.append(pml.Apply(
                function='-',
                Constant=[pml.Constant(
                    dataType="double",  # <---------------------
                    valueOf_=unround_scalers(trfm.center_[col_name_idx])
                )],
                FieldRef=[pml.FieldRef(field=col_names[col_name_idx])],
                Extension=[pml.Extension(name='scaling', anytypeobjs_=['RobustScaler'])]
            ))
            apply_outer = pml.Apply(
                Apply_member=apply_inner,
                function='/',
                Constant=[pml.Constant(
                    dataType="double",  # <----------------------------
                    valueOf_=unround_scalers(trfm.scale_[col_name_idx])
                )]
            )
            derived_flds.append(pml.DerivedField(
                Apply=apply_outer,
                name=derived_colnames[col_name_idx],
                optype="continuous",
                dataType="double"
            ))
    pp_dict['der_fld'] = derived_flds
    pp_dict['der_col_names'] = derived_colnames
    return pp_dict
コード例 #3
0
    def writePMML(self, model, predictedClass, fileName, dataSet):

        try:
            from nyokaBase.keras.keras_model_to_pmml import KerasToPmml
            pmmlToBack = KerasToPmml(model,
                                     model_name="TrainedModel",
                                     description="Keras Models in PMML",
                                     dataSet=dataSet,
                                     predictedClasses=predictedClass)
        except Exception as e:
            data_details = self.upDateStatus()
            data_details['status'] = 'Training Failed'
            data_details[
                'errorMessage'] = 'Error while converting Keras to PMML >> ' + str(
                    e)
            data_details['errorTraceback'] = traceback.format_exc()
            with open(self.statusFile, 'w') as filetosave:
                json.dump(data_details, filetosave)
            # sys.exit()
            return -1

        scriptCode = self.pmmlObj['script']
        if scriptCode == []:
            scriptCode = None
        else:
            for sc in scriptCode:
                sc.__dict__['valueOf_'] = sc.get_valueOf_().replace(
                    '<', '&lt;')

        pmmlObjNew = pmmlToBack.__dict__
        dDict = pmmlObjNew['DataDictionary']
        netw = pmmlObjNew['DeepNetwork']
        netw = self.updateSectionInfo(netw)
        extensionInfoForData = [
            ny.Extension(value=self.hdExtDet, anytypeobjs_=[''])
        ]
        hd = ny.Header(copyright="Copyright (c) 2018 Software AG",
                       Extension=extensionInfoForData,
                       description="Neural Network Model",
                       Timestamp=ny.Timestamp(datetime.now()))
        with open(fileName, 'w') as filetosave:
            jj = ny.PMML(version="4.3Ext",
                         DeepNetwork=netw,
                         DataDictionary=dDict,
                         Header=hd,
                         script=scriptCode)
            jj.export(filetosave, 0)
コード例 #4
0
def tfidf_vectorizer(trfm, col_names):
    """

    Parameters
    ----------
    trfm :
        Contains the Sklearn's TfIdfVectorizer preprocessing instance
    col_names : list
        Contains list of feature/column names.
        The column names may represent the names of preprocessed attributes.

    Returns
    -------
    pp_dict : dictionary
        Returns a dictionary that contains attributes related to TfIdfVectorizer preprocessing.

    """
    pp_dict = dict()
    features = trfm.get_feature_names()
    idfs = trfm.idf_
    extra_features = list(trfm.vocabulary_.keys())
    derived_flds = list()
    derived_colnames = get_derived_colnames('tfidf@[' + col_names[0] + ']', features)
    derived_flds.append(
        pml.DerivedField(name='lowercase(' + col_names[0] + ')',
                         optype='categorical', dataType='string',
                         Apply=pml.Apply(function='lowercase',
                                         FieldRef=[pml.FieldRef(field=col_names[0])])))
    for feat_idx, idf in zip(range(len(features)), idfs):
        derived_flds.append(pml.DerivedField(
            name=derived_colnames[feat_idx],
            optype='continuous',
            dataType='double',
            Apply=pml.Apply(function='*',
                            TextIndex=[pml.TextIndex(textField='lowercase(' + col_names[0] + ')',
                                                     wordSeparatorCharacterRE='\s+',
                                                     tokenize='true',
                                                     Constant=pml.Constant(valueOf_=features[feat_idx]),
                                                     Extension=[pml.Extension(anytypeobjs_=[extra_features[feat_idx]])])],
                            Constant=[pml.Constant(valueOf_=idf)])
        ))
    pp_dict['der_fld'] = derived_flds
    pp_dict['der_col_names'] = derived_colnames
    pp_dict['pp_feat_name'] = col_names[0]
    pp_dict['pp_feat_class_lbl'] = list()
    return pp_dict
コード例 #5
0
        def addLayerToPMML(_positionOfLayer, toUpdateLayer, processedOutput,
                           pmmlObject):
            def checkIfFlushRequired(_oldPosition, _newPositon, _pmmlLayer,
                                     _networkLayers):
                if _oldPosition == _newPositon:
                    if (_pmmlLayer.LayerParameters.inputDimension
                            == _networkLayers[_oldPosition].LayerParameters.
                            inputDimension) & (
                                _pmmlLayer.LayerParameters.outputDimension
                                == _networkLayers[_oldPosition].
                                LayerParameters.outputDimension):
                        return False
                    else:
                        return True
                else:
                    return True

            if processedOutput['itemType'] == 'LAYER':
                _inputForPMML = nyokaPMMLUtilities.convertToStandardJson(
                    processedOutput)
                # print ('',_inputForPMML)
                _pmmlOfLayer = nyokaPMMLUtilities.addLayer(_inputForPMML)
                # print('>>>>>>>',_pmmlOfLayer.__dict__)
                _deepNetworkObj = pmmlObject.DeepNetwork[0]
                # print ('step 1')
                _NetworkLayersObject = _deepNetworkObj.NetworkLayer
                # print ('step 2')
                _idsOfNetworklayer = [i.layerId for i in _NetworkLayersObject]
                flushMemory = False
                if toUpdateLayer == True:
                    _oldPositionOFLayer = _idsOfNetworklayer.index(
                        processedOutput['layerId'])
                    # print('>>>> layer id is ',processedOutput['layerId'])
                    # print('>>>> old position to delete',_oldPositionOFLayer)
                    # print('>>>> new position ',_positionOfLayer)
                    # print ('_idsOfNetworklayer',_idsOfNetworklayer)
                    flushMemory = checkIfFlushRequired(_oldPositionOFLayer,
                                                       _positionOfLayer,
                                                       _pmmlOfLayer,
                                                       _NetworkLayersObject)
                    # print('flushmemory is ',flushMemory)
                    if flushMemory == False:
                        _NetworkLayersObject[
                            _oldPositionOFLayer].Extension = _pmmlOfLayer.Extension
                        _pmmlOfLayer = _NetworkLayersObject[
                            _oldPositionOFLayer]
                    del _NetworkLayersObject[_oldPositionOFLayer]
                _NetworkLayersObject.insert(_positionOfLayer, _pmmlOfLayer)
                # print ('step 3')
                if flushMemory == True:
                    _NetworkLayersObject = resetNetworkLayer(
                        _NetworkLayersObject, _positionOfLayer)
                    # print ('step 6')
                _NetworkLayersObject = reorderIdsOfPmml(_NetworkLayersObject)
                _deepNetworkObj.NetworkLayer = _NetworkLayersObject
                _deepNetworkObj.numberOfLayers = len(_NetworkLayersObject)
                pmmlObject.DeepNetwork[0] = _deepNetworkObj

            elif processedOutput['itemType'] == 'DATA':
                # print ("DATA layer came")
                extensionInfoForData = [
                    pml.Extension(value=[], anytypeobjs_=[''])
                ]
                dataVal = {}
                try:
                    dataVal['dataUrl'] = processedOutput['filePath']
                    extensionInfoForData = [
                        pml.Extension(value=dataVal, anytypeobjs_=[''])
                    ]
                    pmmlObject.Header.Extension = extensionInfoForData
                    # print ('Data Step 3')
                    # pmmlObject.export(sys.stdout,0)
                except:
                    pass

            elif processedOutput['itemType'] == 'CODE':
                # print ("CODE layer came")
                try:
                    scrptVal = pmmlObject.script
                    urlOfScript = processedOutput['url']
                    scriptFile = open(processedOutput['filePath'], 'r')
                    scriptCode = scriptFile.read()
                    scriptCode = scriptCode.replace('<', '&lt;')
                    # print (scriptCode)
                    useFor = processedOutput['useFor']
                    scrp = pml.script(content=scriptCode,
                                      class_=urlOfScript,
                                      for_=useFor)
                    # scrp.export(sys.stdout,0)
                    scrptVal.append(scrp)
                    pmmlObject.script = scrptVal
                    # print ('Code Step 10')
                    # pmmlObject.export(sys.stdout,0)
                except:
                    pass
            return (pmmlObject)
コード例 #6
0
    def getPmml(self, architecture):

        fName = 'classification'
        lenOfArch = len(architecture)
        mName = 'Keras Model'

        netWorkInfo = []
        scriptVal = []
        extensionInfoForData = [pml.Extension(value=[], anytypeobjs_=[''])]
        dataVal = {}
        for counta, j in enumerate(architecture):
            if counta == 0:
                someConectionId = 'na'
            else:
                someConectionId = tempConId
            if j['itemType'] in ['CODE']:
                # print ('##################',j)
                scriptFile = open(j['filePath'], 'r')
                scriptCode = scriptFile.read()
                scriptCode = scriptCode.replace('<', '&lt;')
                scriptInfo = {}
                scrptVal = []
                # dataVal['scriptUrl']=j['url']
                useFor = j['useFor']
                extensionInfoForScript = [
                    pml.Extension(value=scrptVal, anytypeobjs_=[''])
                ]
                scrp = pml.script(content=scriptCode,
                                  Extension=extensionInfoForScript,
                                  for_=useFor)
                scriptVal.append(scrp)
                tempConId = None
            elif j['itemType'] in ['DATA']:
                try:
                    dataVal['dataUrl'] = j['filePath']
                    extensionInfoForData = [
                        pml.Extension(value=dataVal, anytypeobjs_=[''])
                    ]
                except:
                    pass
                tempConId = None

            elif j['itemType'] == 'FOLDING':
                #         print (j)
                for k in j['children']:
                    tempdata7 = self.convertToStandardJson(k)
                    tempdata7['connectionLayerId'] = someConectionId
                    tempConId = tempdata7['layerId']
                    pp = addLayer(tempdata7)
                    netWorkInfo.append(pp)
                    someConectionId = tempConId
            else:
                # print ('Start of tamasha$$$$$$$$$$',j)
                tempdata7 = self.convertToStandardJson(j)
                tempdata7['connectionLayerId'] = someConectionId
                tempConId = tempdata7['layerId']
                # print ('pakda', tempdata7)
                pp = self.addLayer(tempdata7)
                netWorkInfo.append(pp)

        kk = pml.DeepNetwork(modelName=mName,
                             functionName=fName,
                             NetworkLayer=netWorkInfo,
                             numberOfLayers=lenOfArch)
        tt = pml.Timestamp(datetime.now())
        hd = pml.Header(copyright="Copyright (c) 2018 Software AG",
                        Extension=extensionInfoForData,
                        description="Neural Network Model",
                        Timestamp=pml.Timestamp(datetime.now()))

        jj = pml.PMML(version="4.3Ext",
                      script=scriptVal,
                      Header=hd,
                      DeepNetwork=[kk])
        return jj
コード例 #7
0
    def addLayer(self, tempData):
        # print ('addLayerPMML 00000111>>>> ',tempData)
        tempLayerBiasobject = pml.LayerBias(content=[])
        tempBia = tempLayerBiasobject.__dict__
        tempBia['weightsFlattenAxis'] = "0"

        tempLayerWeightobject = pml.LayerWeights(content=[])
        tempWei = tempLayerWeightobject.__dict__
        tempWei['weightsFlattenAxis'] = "0"

        if tempData['layerType'] in ['Input']:
            tempData['properties']['outputDimension'] = self.outputForInput(
                tempData)
        if tempData['layerType'] in ['Dropout']:
            if tempData['properties']['dropoutRate'] == '':
                tempData['properties']['dropoutRate'] = '0'
            tempData['properties']['outputDimension'] = self.outputForInput(
                tempData)
        elif tempData['layerType'] in ['BatchNormalization']:
            tempData['properties']['outputDimension'] = self.outputForInput(
                tempData)
            tempWei['weightsShape'] = self.weightBatchNormalization(tempData)
        elif tempData['layerType'] in ['Activation']:
            tempData['properties']['outputDimension'] = tempData['properties'][
                'inputDimension']
        elif tempData['layerType'] in ['Conv2D', 'DepthwiseConv2D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
            tempWei['weightsShape'] = self.weightConvo(tempData)
        elif tempData['layerType'] in ['Flatten', 'GlobalAveragePooling2D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
        elif tempData['layerType'] in ['MaxPooling2D', 'AveragePooling2D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
        elif tempData['layerType'] in ['MaxPooling1D', 'AveragePooling1D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
            tempData['properties']['poolSize'] = str(
                tempData['properties']['poolSize'])
            tempData['properties']['stride'] = str(
                tempData['properties']['stride'])
        elif tempData['layerType'] in ['Reshape']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
            tempData['properties']['reshapeTarget'] = str(
                tuple(tempData['properties']['reshapeTarget']))
        elif tempData['layerType'] in ['ZeroPadding2D', 'ZeroPadding1D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
            if len(tempData['properties']['paddingDims']) == 4:
                top_pad, bottom_pad, left_pad, right_pad = tempData[
                    'properties']['paddingDims']
                tempData['properties']['paddingDims'] = ((top_pad, bottom_pad),
                                                         (left_pad, right_pad))
            elif len(tempData['properties']['paddingDims']) == 1:
                pad = tempData['properties']['paddingDims'][0]
                tempData['properties']['paddingDims'] = (pad, pad)
            tempData['properties']['paddingDims'] = str(
                tuple(tempData['properties']['paddingDims']))
        elif tempData['layerType'] in ['Dense']:
            if tempData['properties']['activationFunction'] == "relu":
                tempData['properties']['activationFunction'] = "rectifier"
            elif tempData['properties']['activationFunction'] == "tanh":
                tempData['properties']['activationFunction'] = "tanch"

            tempData['properties']['outputDimension'] = self.outputForDense(
                tempData)
            tempWei['weightsShape'] = self.weightBiasDense(tempData)[0]
            tempBia['weightsShape'] = self.weightBiasDense(tempData)[1]
        # print ('$$$$$$$$$$$$$$$tempData',tempData)
        tempLayerobject = pml.LayerParameters()
        tempvals = tempLayerobject.__dict__
        for j in list(tempvals.keys()):
            try:
                tempvals[j] = tempData['properties'][j]
            except:
                pass

        if tempData['sectionId'] == None:

            if tempData['layerType'] == 'Input':
                input_filed_name = "base64String"
                kk = pml.NetworkLayer(
                    inputFieldName=input_filed_name,
                    layerType=tempData['layerType'],
                    layerId=tempData['layerId'],
                    connectionLayerId=tempData['connectionLayerId'],
                    LayerParameters=tempLayerobject)
            elif tempData['layerType'] == 'Dense':

                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject,LayerWeights=tempLayerWeightobject,LayerBias=tempLayerBiasobject)
            elif tempData['layerType'] in [
                    'Conv2D', 'DepthwiseConv2D', 'BatchNormalization'
            ]:
                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject,LayerWeights=tempLayerWeightobject)
            else:
                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject)

        else:
            extensionInfo = [
                pml.Extension(value={'sectionId': tempData['sectionId']},
                              anytypeobjs_=[''])
            ]
            if tempData['layerType'] == 'Input':
                input_filed_name = "base64String"
                kk=pml.NetworkLayer(inputFieldName=input_filed_name,Extension=[extensionInfo], layerType=tempData['layerType'],\
                                   layerId=tempData['layerId'],connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject)
            elif tempData['layerType'] == 'Dense':

                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],Extension=extensionInfo,\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject,LayerWeights=tempLayerWeightobject,LayerBias=tempLayerBiasobject)
            elif tempData['layerType'] in [
                    'Conv2D', 'DepthwiseConv2D', 'BatchNormalization'
            ]:

                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],Extension=extensionInfo,\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject,LayerWeights=tempLayerWeightobject)
            else:
                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],Extension=extensionInfo,\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject)

        return kk