コード例 #1
0
def create_target_assigner(reference, stage=None,
						   negative_class_weight=1.0,
						   unmatched_cls_target=None):
	"""Factory function for creating standard target assigners.

	Args:
		reference: string referencing the type of TargetAssigner.
		stage: string denoting stage: {proposal, detection}.
		negative_class_weight: classification weight to be associated to negative
			anchors (default: 1.0)
		unmatched_cls_target: a float32 tensor with shape [d_1, d_2, ..., d_k]
			which is consistent with the classification target for each
			anchor (and can be empty for scalar targets).	This shape must thus be
			compatible with the groundtruth labels that are passed to the Assign
			function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
			If set to None, unmatched_cls_target is set to be 0 for each anchor.

	Returns:
		TargetAssigner: desired target assigner.

	Raises:
		ValueError: if combination reference+stage is invalid.
	"""
	if reference == 'Multibox' and stage == 'proposal':
		similarity_calc = sim_calc.NegSqDistSimilarity()
		matcher = bipartite_matcher.GreedyBipartiteMatcher()
		box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()

	elif reference == 'FasterRCNN' and stage == 'proposal':
		similarity_calc = sim_calc.IouSimilarity()
		matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.7,
												unmatched_threshold=0.3,
												force_match_for_each_row=True)
		box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
				scale_factors=[10.0, 10.0, 5.0, 5.0])

	elif reference == 'FasterRCNN' and stage == 'detection':
		similarity_calc = sim_calc.IouSimilarity()
		# Uses all proposals with IOU < 0.5 as candidate negatives.
		matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
												negatives_lower_than_unmatched=True)
		box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
				scale_factors=[10.0, 10.0, 5.0, 5.0])

	elif reference == 'FastRCNN':
		similarity_calc = sim_calc.IouSimilarity()
		matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
											 unmatched_threshold=0.1,
											 force_match_for_each_row=False,
											 negatives_lower_than_unmatched=False)
		box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()

	else:
		raise ValueError('No valid combination of reference and stage.')

	return TargetAssigner(similarity_calc, matcher, box_coder,
						negative_class_weight=negative_class_weight,
						unmatched_cls_target=unmatched_cls_target)
コード例 #2
0
def create_target_assigner(reference, stage=None,
                           negative_class_weight=1.0, use_matmul_gather=False):
    """Factory function for creating standard target assigners.

    Args:
      reference: string referencing the type of TargetAssigner.
      stage: string denoting stage: {proposal, detection}.
      negative_class_weight: classification weight to be associated to negative
        anchors (default: 1.0)
      use_matmul_gather: whether to use matrix multiplication based gather which
        are better suited for TPUs.

    Returns:
      TargetAssigner: desired target assigner.

    Raises:
      ValueError: if combination reference+stage is invalid.
    """
    if reference == 'Multibox' and stage == 'proposal':
        similarity_calc = sim_calc.NegSqDistSimilarity()
        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()

    elif reference == 'FasterRCNN' and stage == 'proposal':
        similarity_calc = sim_calc.IouSimilarity()
        matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.7,
                                               unmatched_threshold=0.3,
                                               force_match_for_each_row=True,
                                               use_matmul_gather=use_matmul_gather)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
            scale_factors=[10.0, 10.0, 5.0, 5.0])

    elif reference == 'FasterRCNN' and stage == 'detection':
        similarity_calc = sim_calc.IouSimilarity()
        # Uses all proposals with IOU < 0.5 as candidate negatives.
        matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                               negatives_lower_than_unmatched=True,
                                               use_matmul_gather=use_matmul_gather)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
            scale_factors=[10.0, 10.0, 5.0, 5.0])

    elif reference == 'FastRCNN':
        similarity_calc = sim_calc.IouSimilarity()
        matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                               unmatched_threshold=0.1,
                                               force_match_for_each_row=False,
                                               negatives_lower_than_unmatched=False,
                                               use_matmul_gather=use_matmul_gather)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()

    else:
        raise ValueError('No valid combination of reference and stage.')

    return TargetAssigner(similarity_calc, matcher, box_coder,
                          negative_class_weight=negative_class_weight)
コード例 #3
0
ファイル: ssd_dataloader.py プロジェクト: zenanchen21/AI-HPC
def encode_labels(gt_boxes, gt_labels):
  """Labels anchors with ground truth inputs.

  Args:
    gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
      For each row, it stores [y0, x0, y1, x1] for four corners of a box.
    gt_labels: A integer tensor with shape [N, 1] representing groundtruth
      classes.
  Returns:
    encoded_classes: a tensor with shape [num_anchors, 1].
    encoded_boxes: a tensor with shape [num_anchors, 4].
    num_positives: scalar tensor storing number of positives in an image.
  """
  similarity_calc = region_similarity_calculator.IouSimilarity()
  matcher = argmax_matcher.ArgMaxMatcher(
      matched_threshold=ssd_constants.MATCH_THRESHOLD,
      unmatched_threshold=ssd_constants.MATCH_THRESHOLD,
      negatives_lower_than_unmatched=True,
      force_match_for_each_row=True)

  box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
      scale_factors=ssd_constants.BOX_CODER_SCALES)

  default_boxes = box_list.BoxList(tf.convert_to_tensor(DefaultBoxes()('ltrb')))
  target_boxes = box_list.BoxList(gt_boxes)

  assigner = target_assigner.TargetAssigner(
      similarity_calc, matcher, box_coder)

  encoded_classes, _, encoded_boxes, _, matches = assigner.assign(
      default_boxes, target_boxes, gt_labels)
  num_matched_boxes = tf.reduce_sum(
      tf.cast(tf.not_equal(matches.match_results, -1), tf.float32))
  return encoded_classes, encoded_boxes, num_matched_boxes
コード例 #4
0
def build(box_coder_config):
    """Builds a box coder object based on the box coder config.

  Args:
    box_coder_config: A box_coder.proto object containing the config for the
      desired box coder.

  Returns:
    BoxCoder based on the config.

  Raises:
    ValueError: On empty box coder proto.
  """
    if not isinstance(box_coder_config, box_coder_pb2.BoxCoder):
        raise ValueError(
            'box_coder_config not of type box_coder_pb2.BoxCoder.')

    if box_coder_config.WhichOneof(
            'box_coder_oneof') == 'faster_rcnn_box_coder':
        return faster_rcnn_box_coder.FasterRcnnBoxCoder(scale_factors=[
            box_coder_config.faster_rcnn_box_coder.y_scale,
            box_coder_config.faster_rcnn_box_coder.x_scale,
            box_coder_config.faster_rcnn_box_coder.height_scale,
            box_coder_config.faster_rcnn_box_coder.width_scale
        ])
    if (box_coder_config.WhichOneof('box_coder_oneof') ==
            'mean_stddev_box_coder'):
        return mean_stddev_box_coder.MeanStddevBoxCoder()
    if box_coder_config.WhichOneof('box_coder_oneof') == 'square_box_coder':
        return square_box_coder.SquareBoxCoder(scale_factors=[
            box_coder_config.square_box_coder.y_scale,
            box_coder_config.square_box_coder.x_scale,
            box_coder_config.square_box_coder.length_scale
        ])
    raise ValueError('Empty box coder.')
コード例 #5
0
def build(box_coder_config):

    if not isinstance(box_coder_config, box_coder_pb2.BoxCoder):
        raise ValueError(
            'box_coder_config not of type box_coder_pb2.BoxCoder.')

    if box_coder_config.WhichOneof(
            'box_coder_oneof') == 'faster_rcnn_box_coder':
        return faster_rcnn_box_coder.FasterRcnnBoxCoder(scale_factors=[
            box_coder_config.faster_rcnn_box_coder.y_scale,
            box_coder_config.faster_rcnn_box_coder.x_scale,
            box_coder_config.faster_rcnn_box_coder.height_scale,
            box_coder_config.faster_rcnn_box_coder.width_scale
        ])
    if box_coder_config.WhichOneof('box_coder_oneof') == 'keypoint_box_coder':
        return keypoint_box_coder.KeypointBoxCoder(
            box_coder_config.keypoint_box_coder.num_keypoints,
            scale_factors=[
                box_coder_config.keypoint_box_coder.y_scale,
                box_coder_config.keypoint_box_coder.x_scale,
                box_coder_config.keypoint_box_coder.height_scale,
                box_coder_config.keypoint_box_coder.width_scale
            ])
    if (box_coder_config.WhichOneof('box_coder_oneof') ==
            'mean_stddev_box_coder'):
        return mean_stddev_box_coder.MeanStddevBoxCoder(
            stddev=box_coder_config.mean_stddev_box_coder.stddev)
    if box_coder_config.WhichOneof('box_coder_oneof') == 'square_box_coder':
        return square_box_coder.SquareBoxCoder(scale_factors=[
            box_coder_config.square_box_coder.y_scale,
            box_coder_config.square_box_coder.x_scale,
            box_coder_config.square_box_coder.length_scale
        ])
    raise ValueError('Empty box coder.')
コード例 #6
0
    def __init__(self,
                 nonbackground_classes: int,
                 loc_weight: float = 1.,
                 conf_weight: float = 1.,
                 nms_redund_threshold: float = 0.2,
                 min_score_threshold: float = 0.01,
                 top_k_per_class: int = 100,
                 ohem: bool = False,
                 neg_loss_weight: float = 1.,
                 obb: bool = False):

        self.num_nonbackground_classes = nonbackground_classes
        self.num_classes = nonbackground_classes + 1

        self.obb = obb
        self.box_coder = oriented_box_coder.OrientedBoxCoder(
        ) if obb else faster_rcnn_box_coder.FasterRcnnBoxCoder()

        self._ohem = ohem
        self._neg_loss_weight = neg_loss_weight
        self._loc_weight = loc_weight
        self._conf_weight = conf_weight
        self._nms_redund_threshold = nms_redund_threshold
        self._min_score_threshold = min_score_threshold
        self._top_k_per_class = top_k_per_class
        pass
コード例 #7
0
 def graph_fn(rel_codes, anchors):
     scale_factors = [2, 3, 4, 5]
     anchors = box_list.BoxList(anchors)
     coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
         scale_factors=scale_factors)
     boxes = coder.decode(rel_codes, anchors).get()
     return boxes
コード例 #8
0
def create_coloc_target_assigner(reference,
                                 stage=None,
                                 positive_class_weight=1.0,
                                 negative_class_weight=1.0,
                                 unmatched_cls_target=None,
                                 k_shot=1,
                                 independent_matching=False):
    """Factory function for creating coloc target assigners.

  Args:
    reference: string referencing the type of TargetAssigner.
    stage: string denoting stage: {proposal, detection}.
    positive_class_weight: classification weight to be associated to positive
      anchors (default: 1.0)
    negative_class_weight: classification weight to be associated to negative
      anchors (default: 1.0)
    unmatched_cls_target: a float32 tensor with shape [d_1, d_2, ..., d_k]
      which is consistent with the classification target for each
      anchor (and can be empty for scalar targets).  This shape must thus be
      compatible with the groundtruth labels that are passed to the Assign
      function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
      If set to None, unmatched_cls_target is set to be 0 for each anchor.

  Returns:
    TargetAssigner: desired target assigner.

  Raises:
    ValueError: if combination reference+stage is invalid.
  """
    if reference == 'RCNNAttention' and stage == 'coloc':
        k_shot_similarity_calc = sim_calc.IouSimilarity()

        # Uses all proposals with IOU < 0.5 as candidate negatives.
        k_shot_matcher = argmax_matcher.ArgMaxMatcher(
            matched_threshold=0.5, negatives_lower_than_unmatched=True)
        matcher = KShotMatcher(k_shot_similarity_calc, k_shot_matcher, k_shot,
                               independent_matching)

        # We do not use the similarity calculator inside the target
        # assigner. Matches will be decided before calling the
        # target_assigner.
        class _DummySimilarity(sim_calc.RegionSimilarityCalculator):
            def _compare(self, boxlist1, boxlist2):
                return None

        similarity_calc = _DummySimilarity()

        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
            scale_factors=[10.0, 10.0, 5.0, 5.0])
    else:
        raise ValueError('No valid combination of reference and stage.')

    return target_assign.TargetAssigner(
        similarity_calc,
        matcher,
        box_coder,
        positive_class_weight=positive_class_weight,
        negative_class_weight=negative_class_weight,
        unmatched_cls_target=unmatched_cls_target)
コード例 #9
0
 def graph_fn(boxes, anchors):
     scale_factors = [2, 3, 4, 5]
     boxes = box_list.BoxList(boxes)
     anchors = box_list.BoxList(anchors)
     coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
         scale_factors=scale_factors)
     rel_codes = coder.encode(boxes, anchors)
     return rel_codes
コード例 #10
0
  def accuracy_function(self, logits, labels, data_type):
    """Returns the ops to measure the mean precision of the model."""
    try:
      import ssd_dataloader  # pylint: disable=g-import-not-at-top
      from object_detection.box_coders import faster_rcnn_box_coder  # pylint: disable=g-import-not-at-top
      from object_detection.core import box_coder  # pylint: disable=g-import-not-at-top
      from object_detection.core import box_list  # pylint: disable=g-import-not-at-top
    except ImportError:
      raise ImportError('To use the COCO dataset, you must clone the '
                        'repo https://github.com/tensorflow/models and add '
                        'tensorflow/models and tensorflow/models/research to '
                        'the PYTHONPATH, and compile the protobufs by '
                        'following https://github.com/tensorflow/models/blob/'
                        'master/research/object_detection/g3doc/installation.md'
                        '#protobuf-compilation ; To evaluate using COCO'
                        'metric, download and install Python COCO API from'
                        'https://github.com/cocodataset/cocoapi')

    # Unpack model output back to locations and confidence scores of predictions
    # pred_locs: relative locations (coordiates) of objects in all SSD boxes
    # shape: [batch_size, NUM_SSD_BOXES, 4]
    # pred_labels: confidence scores of objects being of all categories
    # shape: [batch_size, NUM_SSD_BOXES, label_num]
    pred_locs, pred_labels = tf.split(logits, [4, self.label_num], 2)

    ssd_box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
        scale_factors=ssd_constants.BOX_CODER_SCALES)
    anchors = box_list.BoxList(
        tf.convert_to_tensor(ssd_dataloader.DefaultBoxes()('ltrb')))
    pred_boxes = box_coder.batch_decode(
        encoded_boxes=pred_locs, box_coder=ssd_box_coder, anchors=anchors)

    pred_scores = tf.nn.softmax(pred_labels, axis=2)

    boxes_classes, id_shape = tf.split(
        labels, [ssd_constants.MAX_NUM_EVAL_BOXES, 1], 1)
    # TODO(haoyuzhang): maybe use these values for visualization.
    gt_boxes, gt_classes = tf.split(boxes_classes, [4, 1], 2)  # pylint: disable=unused-variable
    id_shape = tf.squeeze(id_shape, 1)
    source_id, raw_shape, _ = tf.split(id_shape, [1, 3, 1], 1)
    source_id = tf.squeeze(source_id, 1)

    return {
        (constants.UNREDUCED_ACCURACY_OP_PREFIX +
         ssd_constants.PRED_BOXES): pred_boxes,
        (constants.UNREDUCED_ACCURACY_OP_PREFIX +
         ssd_constants.PRED_SCORES): pred_scores,
        # TODO(haoyuzhang): maybe use these values for visualization.
        # constants.UNREDUCED_ACCURACY_OP_PREFIX+'gt_boxes': gt_boxes,
        # constants.UNREDUCED_ACCURACY_OP_PREFIX+'gt_classes': gt_classes,
        (constants.UNREDUCED_ACCURACY_OP_PREFIX +
         ssd_constants.SOURCE_ID): source_id,
        (constants.UNREDUCED_ACCURACY_OP_PREFIX +
         ssd_constants.RAW_SHAPE): raw_shape
    }
コード例 #11
0
 def test_very_small_Width_nan_after_encoding(self):
     boxes = [[10.0, 10.0, 10.0000001, 20.0]]
     anchors = [[15.0, 12.0, 30.0, 18.0]]
     expected_rel_codes = [[-0.833333, 0., -21.128731, 0.510826]]
     boxes = box_list.BoxList(tf.constant(boxes))
     anchors = box_list.BoxList(tf.constant(anchors))
     coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()
     rel_codes = coder.encode(boxes, anchors)
     with self.test_session() as sess:
         rel_codes_out, = sess.run([rel_codes])
         self.assertAllClose(rel_codes_out, expected_rel_codes)
コード例 #12
0
 def test_get_correct_boxes_after_decoding(self):
     anchors = [[15.0, 12.0, 30.0, 18.0], [0.1, 0.0, 0.7, 0.9]]
     rel_codes = [[-0.5, -0.416666, -0.405465, -0.182321],
                  [-0.083333, -0.222222, -0.693147, -1.098612]]
     expected_boxes = [[10.0, 10.0, 20.0, 15.0], [0.2, 0.1, 0.5, 0.4]]
     anchors = box_list.BoxList(tf.constant(anchors))
     coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()
     boxes = coder.decode(rel_codes, anchors)
     with self.test_session() as sess:
         boxes_out, = sess.run([boxes.get()])
         self.assertAllClose(boxes_out, expected_boxes)
コード例 #13
0
 def test_get_correct_boxes_after_decoding_with_scaling(self):
     anchors = [[15.0, 12.0, 30.0, 18.0], [0.1, 0.0, 0.7, 0.9]]
     rel_codes = [[-1., -1.25, -1.62186, -0.911608],
                  [-0.166667, -0.666667, -2.772588, -5.493062]]
     scale_factors = [2, 3, 4, 5]
     expected_boxes = [[10.0, 10.0, 20.0, 15.0], [0.2, 0.1, 0.5, 0.4]]
     anchors = box_list.BoxList(tf.constant(anchors))
     coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
         scale_factors=scale_factors)
     boxes = coder.decode(rel_codes, anchors)
     with self.test_session() as sess:
         boxes_out, = sess.run([boxes.get()])
         self.assertAllClose(boxes_out, expected_boxes)
コード例 #14
0
    def __init__(self):
        similarity_calc = region_similarity_calculator.IouSimilarity()
        matcher = argmax_matcher.ArgMaxMatcher(
            matched_threshold=ssd_constants.MATCH_THRESHOLD,
            unmatched_threshold=ssd_constants.MATCH_THRESHOLD,
            negatives_lower_than_unmatched=True,
            force_match_for_each_row=True)

        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
            scale_factors=ssd_constants.BOX_CODER_SCALES)

        self.default_boxes = DefaultBoxes()('ltrb')
        self.default_boxes = box_list.BoxList(
            tf.convert_to_tensor(self.default_boxes))
        self.assigner = target_assigner.TargetAssigner(similarity_calc,
                                                       matcher, box_coder)
コード例 #15
0
	def test_get_correct_relative_codes_after_encoding(self):
		print('\n=================================================================')
		print('test_get_correct_relative_codes_after_encoding')

		# [y1, x1, y2, x2]
		boxes = [[10.0, 10.0, 20.0, 15.0], 
				 [0.2, 0.1, 0.5, 0.4]]
		anchors = [[15.0, 12.0, 30.0, 18.0], 
				   [0.1, 0.0, 0.7, 0.9]]
		expected_rel_codes = [[-0.5, -0.416666, -0.405465, -0.182321],
							  [-0.083333, -0.222222, -0.693147, -1.098612]]

		boxes = box_list.BoxList(tf.constant(boxes))
		anchors = box_list.BoxList(tf.constant(anchors))

		coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()
		rel_codes = coder.encode(boxes, anchors)
		with self.test_session() as sess:
			rel_codes_out, = sess.run([rel_codes])
			self.assertAllClose(rel_codes_out, expected_rel_codes)
コード例 #16
0
 def graph_fn(boxes, anchors):
     boxes = box_list.BoxList(boxes)
     anchors = box_list.BoxList(anchors)
     coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()
     rel_codes = coder.encode(boxes, anchors)
     return rel_codes
コード例 #17
0
def main(out_dir,
         image_dir,
         annotations_path,
         SSD_class,
         desired_categories=None,
         win_set=None,
         min_coverage=.3,
         num_out_files=30):
    os.makedirs(out_dir, exist_ok=True)

    annotations = get_annotations(annotations_path)
    if not desired_categories:
        desired_categories = [
            'plane', 'baseball-diamond', 'bridge', 'ground-track-field',
            'small-vehicle', 'large-vehicle', 'ship', 'tennis-court',
            'basketball-court', 'storage-tank', 'soccer-ball-field',
            'roundabout', 'harbor', 'swimming-pool', 'helicopter'
        ]
    desired_ids = construct_desired_ids(desired_categories,
                                        annotations['categories'])
    assert len(desired_ids) == len(desired_categories)
    # construct dictionaries containing info about images
    (images_dict, file_name_dict) = construct_dicts(annotations)
    # create category index in the correct format for retraining and detection
    category_index = construct_category_index(annotations, desired_categories)
    label_id_offsets = calculate_label_id_offsets(category_index)

    num_nonbackground_classes = len(desired_categories)
    input_dims = SSD_class.get_input_dims()
    default_boxes = SSD_class.get_anchors()
    unmatched_class_target = SSD_class.get_unmatched_class_target(
        num_nonbackground_classes)
    box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()

    filenames = [
        os.path.join(out_dir, f"examples_{i}.tfrecord")
        for i in range(num_out_files)
    ]
    writers = [tf.io.TFRecordWriter(f) for f in filenames]

    count = 0
    preprocessor = Preprocessor(images_dict,
                                file_name_dict,
                                image_dir,
                                annotations,
                                category_index,
                                win_set=win_set,
                                min_coverage=min_coverage)
    for (window_np, gt_boxes, gt_classes) in preprocessor.iterate():
        window_np = tf.image.resize(window_np, input_dims)

        [gt_classes] = map_category_ids_to_index(label_id_offsets,
                                                 [gt_classes])
        gt_classes = tf.constant(gt_classes, dtype=tf.int32)
        gt_classes = tf.one_hot(gt_classes,
                                num_nonbackground_classes,
                                dtype=tf.float32)
        zeros = tf.zeros([gt_classes.shape[0], 1], gt_classes.dtype)
        gt_classes = tf.concat([zeros, gt_classes], axis=1)
        targets_set = compute_ssd_targets([gt_boxes], [gt_classes],
                                          default_boxes, box_coder,
                                          unmatched_class_target)
        targets_set = [tf.squeeze(t) for t in targets_set]
        [cls_targets, cls_weights, reg_targets, reg_weights,
         matched] = targets_set
        serialized = serialize_ssd_example(window_np, *targets_set)
        writers[count % len(writers)].write(serialized)
        count += 1
    for w in writers:
        w.close()

    out_meta = os.path.join(out_dir, "meta.json")
    with open(out_meta, "w") as w:
        json_string = json.dumps(
            {
                "num_examples": count,
                "classes": list(desired_categories)
            },
            indent=2)
        w.write(json_string + "\n")
コード例 #18
0
 def graph_fn(rel_codes, anchors):
     anchors = box_list.BoxList(anchors)
     coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()
     boxes = coder.decode(rel_codes, anchors)
     return boxes.get()