コード例 #1
0
def main(tfrecords_filename, label_map=None):
    """
    Visualize the image and label stored in tf record
    Blatantly stole from
    https://stackoverflow.com/questions/50391967/how-to-visualize-a-tfrecord
    :param tfrecords_filename: full path to the tfrecord file
    :param label_map: None by default
    :return:
    """
    matplotlib.use('TkAgg')
    if label_map is not None:
        label_map_proto = pb.StringIntLabelMap()
        with tf.gfile.GFile(label_map, 'r') as f:
            text_format.Merge(f.read(), label_map_proto)
            class_dict = {}
            for entry in label_map_proto.item:
                class_dict[entry.id] = {'name': entry.display_name}
    sess = tf.Session()
    decoder = TfDecoder(label_map_proto_file=label_map, use_display_name=False)
    sess.run(tf.tables_initializer())
    for record in tf.python_io.tf_record_iterator(tfrecords_filename):
        example = decoder.decode(record)
        host_example = sess.run(example)
        scores = np.ones(host_example['groundtruth_boxes'].shape[0])
        vu.visualize_boxes_and_labels_on_image_array(
            host_example['image'],
            host_example['groundtruth_boxes'],
            host_example['groundtruth_classes'],
            scores,
            class_dict,
            max_boxes_to_draw=None,
            use_normalized_coordinates=True)
        plt.imshow(host_example['image'])
        plt.show()
コード例 #2
0
def read_and_decode(filename_queue):

    decoder = TfExampleDecoder()
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    tensorDict = decoder.decode(serialized_example)

    image = tensorDict["image"]
    boxes = tensorDict["groundtruth_boxes"]

    #depth = tf.cast(features['depth'], tf.int32)

    return image, boxes
コード例 #3
0
    def __init__(self, data_inputs=None, validation_inputs=None, batch_size=1):
        """
        Constructor
        :param data_inputs: List of input ops for the model
        :param validation_inputs: List of validation ops for the model
        :param batch_size: Batch size for the data
        """
        self._validation_inputs = validation_inputs
        self._data_inputs = data_inputs
        self._batch_size = batch_size

        if data_inputs is None:
            self._data_inputs = ['image_tensor']
        else:
            self._data_inputs = data_inputs
        self.keys_to_features = TfExampleDecoder().keys_to_features

        self.items_to_handlers = {
            fields.InputDataFields.image:
            (slim_example_decoder.Image(image_key='image/encoded',
                                        format_key='image/format',
                                        channels=3)),
            fields.InputDataFields.source_id:
            (slim_example_decoder.Tensor('image/source_id')),
        }
コード例 #4
0
def draw_tfrecord(tfrecords_filename, label_map=None):
    """
    Draw the image and bounding box indicated in the groundtruth tf record file.
    :param tfrecords_filename:
    :param label_map:
    :return:
    """

    if label_map is not None:
        label_map_proto = pb.StringIntLabelMap()
        with tf.gfile.GFile(label_map, 'r') as f:
            text_format.Merge(f.read(), label_map_proto)
            class_dict = {}
            for entry in label_map_proto.item:
                class_dict[entry.id] = {'name': entry.display_name}
    sess = tf.Session()
    decoder = TfDecoder(label_map_proto_file=label_map, use_display_name=False)
    sess.run(tf.tables_initializer())
    iter_num = 0
    for record in tf.python_io.tf_record_iterator(tfrecords_filename):
        iter_num += 1
        print("This is the {} example".format(iter_num))
        example = decoder.decode(record)
        host_example = sess.run(example)
        # Set the score of the groundth truth bounding box as 1
        scores = np.ones(host_example['groundtruth_boxes'].shape[0])
        vu.visualize_boxes_and_labels_on_image_array(
            host_example['image'],
            host_example['groundtruth_boxes'],
            host_example['groundtruth_classes'],
            scores,
            class_dict,
            max_boxes_to_draw=None,
            use_normalized_coordinates=True)
        plt.imshow(host_example['image'])
        plt.show(block=False)
        plt.pause(.1)
        plt.close("all")
コード例 #5
0
from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder
from object_detection.utils.flow_util import flow_to_color, flow_error_image, flow_error_avg
from object_detection.utils.np_motion_util import dense_flow_from_motion, _rotation_angle
from object_detection.utils.visualization_utils import visualize_flow

with tf.Graph().as_default():
    #file_pattern = 'object_detection/data/records/vkitti_train/00000-of-00020.record'
    file_pattern = 'object_detection/data/records/kitti_train/00000-of-00002.record'
    tfrecords = glob.glob(file_pattern)

    with tf.device('/cpu:0'):
        filename_queue = tf.train.string_input_producer(
            tfrecords, capacity=len(tfrecords))
        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(filename_queue)
        example = TfExampleDecoder().decode(serialized_example)
        flow_color = flow_to_color(
            tf.expand_dims(example['groundtruth_flow'], 0))[0, :, :, :]
        print(example.keys())

    sess = tf.Session()
    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    sess.run(init_op)

    tf.train.start_queue_runners(sess=sess)
    out_dir = 'object_detection/output/tests/vkitti/'
    if os.path.isdir(out_dir):
        shutil.rmtree(out_dir)
    os.makedirs(out_dir)
コード例 #6
0
def process_detections(detections_record, categories):
    record_iterator = tf.python_io.tf_record_iterator(path=detections_record)
    data_parser = tf_example_parser.TfExampleDetectionAndGTParser()

    confusion_matrix = np.zeros(shape=(len(categories) + 1,
                                       len(categories) + 1))

    num_shown = 0
    image_index = 0

    os.makedirs(detectionDirName, exist_ok=True)

    for string_record in record_iterator:
        example = tf.train.Example()
        example.ParseFromString(string_record)
        decoded_dict = data_parser.parse(example)

        image_index += 1

        if decoded_dict:
            groundtruth_boxes = decoded_dict[
                standard_fields.InputDataFields.groundtruth_boxes]
            groundtruth_classes = decoded_dict[
                standard_fields.InputDataFields.groundtruth_classes]

            detection_scores = decoded_dict[
                standard_fields.DetectionResultFields.detection_scores]
            detection_classes = decoded_dict[
                standard_fields.DetectionResultFields.detection_classes][
                    detection_scores >= CONFIDENCE_THRESHOLD]
            detection_boxes = decoded_dict[
                standard_fields.DetectionResultFields.detection_boxes][
                    detection_scores >= CONFIDENCE_THRESHOLD]

            if num_shown < NUM_TO_SHOW:

                # Convert encoded image in example TF Record to image
                testing = TfDecoder()
                features = testing.decode(string_record)
                image = features['image']
                with tf.Session() as sess:
                    image = image.eval()

                im = PIL.Image.fromarray(image)
                for box in groundtruth_boxes:
                    vis_util.draw_bounding_box_on_image(
                        im,
                        box[0] * IMAGE_HEIGHT,
                        box[1] * IMAGE_WIDTH,
                        box[2] * IMAGE_HEIGHT,
                        box[3] * IMAGE_WIDTH,
                        color='red',
                        thickness=1,
                        use_normalized_coordinates=False)
                for box in detection_boxes:
                    vis_util.draw_bounding_box_on_image(
                        im,
                        box[0] * IMAGE_HEIGHT,
                        box[1] * IMAGE_WIDTH,
                        box[2] * IMAGE_HEIGHT,
                        box[3] * IMAGE_WIDTH,
                        color='blue',
                        thickness=1,
                        use_normalized_coordinates=False)

                # UNCOMMENT TO DISPLAY IMAGES W/ BoundingBox
                #plt.imshow(np.asarray(im))
                #plt.show()

                # Code to create directory & save images w/ bounding boxes

                filename = decoded_dict['key']

                im.save(detectionDirName + "/" + filename)

                num_shown += 1

            matches = []

            if image_index % 100 == 0:
                print("Processed %d images" % (image_index))
            for i in range(len(groundtruth_boxes)):
                for j in range(len(detection_boxes)):
                    iou = compute_iou(groundtruth_boxes[i], detection_boxes[j])

                    if iou > IOU_THRESHOLD:
                        matches.append([i, j, iou])

            matches = np.array(matches)
            if matches.shape[0] > 0:
                # Sort list of matches by descending IOU so we can remove duplicate detections
                # while keeping the highest IOU entry.
                matches = matches[matches[:, 2].argsort()[::-1][:len(matches)]]

                # Remove duplicate detections from the list.
                matches = matches[np.unique(matches[:, 1],
                                            return_index=True)[1]]

                # Sort the list again by descending IOU. Removing duplicates doesn't preserve
                # our previous sort.
                matches = matches[matches[:, 2].argsort()[::-1][:len(matches)]]

                # Remove duplicate ground truths from the list.
                matches = matches[np.unique(matches[:, 0],
                                            return_index=True)[1]]

            for i in range(len(groundtruth_boxes)):
                if matches.shape[0] > 0 and matches[matches[:, 0] ==
                                                    i].shape[0] == 1:
                    confusion_matrix[groundtruth_classes[i] - 1][
                        detection_classes[int(matches[matches[:, 0] == i,
                                                      1][0])] - 1] += 1
                else:
                    confusion_matrix[groundtruth_classes[i] -
                                     1][confusion_matrix.shape[1] - 1] += 1

            for i in range(len(detection_boxes)):
                if matches.shape[0] > 0 and matches[matches[:, 1] ==
                                                    i].shape[0] == 0:
                    confusion_matrix[confusion_matrix.shape[0] -
                                     1][detection_classes[i] - 1] += 1
        else:
            print("Skipped image %d" % (image_index))

    print("Processed %d images" % (image_index))

    return confusion_matrix