def test_beam_pipeline(self): with InMemoryTFRecord([self._create_tf_example()]) as input_tfrecord: temp_dir = tempfile.mkdtemp(dir=os.environ.get('TEST_TMPDIR')) output_tfrecord = os.path.join(temp_dir, 'output_tfrecord') saved_model_path = self._export_saved_model() confidence_threshold = 0.8 num_shards = 1 pipeline_options = beam.options.pipeline_options.PipelineOptions( runner='DirectRunner') p = beam.Pipeline(options=pipeline_options) generate_detection_data.construct_pipeline(p, input_tfrecord, output_tfrecord, saved_model_path, confidence_threshold, num_shards) p.run() filenames = tf.io.gfile.glob(output_tfrecord + '-?????-of-?????') actual_output = [] record_iterator = tf.data.TFRecordDataset( tf.convert_to_tensor(filenames)).as_numpy_iterator() for record in record_iterator: actual_output.append(record) self.assertEqual(len(actual_output), 1) self.assert_expected_example( tf.train.Example.FromString(actual_output[0]))
def test_beam_pipeline(self): with InMemoryTFRecord([self._create_tf_example()]) as input_tfrecord: runner = runners.DirectRunner() temp_dir = tempfile.mkdtemp(dir=os.environ.get('TEST_TMPDIR')) output_tfrecord = os.path.join(temp_dir, 'output_tfrecord') saved_model_path = self._export_saved_model() confidence_threshold = 0.8 num_shards = 1 pipeline = generate_detection_data.construct_pipeline( input_tfrecord, output_tfrecord, saved_model_path, confidence_threshold, num_shards) runner.run(pipeline) filenames = tf.io.gfile.glob(output_tfrecord + '-?????-of-?????') actual_output = [] record_iterator = tf.python_io.tf_record_iterator( path=filenames[0]) for record in record_iterator: actual_output.append(record) self.assertEqual(len(actual_output), 1) self.assert_expected_example( tf.train.Example.FromString(actual_output[0]))