def test_expected_calibration_error_with_multiple_data_streams(self): """Test expected calibration error when multiple data batches provided.""" y_true, y_pred = self._get_calibration_placeholders() expected_ece_op, update_op = calibration_metrics.expected_calibration_error( y_true, y_pred, nbins=2) with self.test_session() as sess: metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES) sess.run(tf.variables_initializer(var_list=metrics_vars)) # Identical data to test_expected_calibration_error_all_bins_filled, # except split over three batches. sess.run( update_op, feed_dict={ y_pred: np.array([0., 0.2]), y_true: np.array([0, 0]) }) sess.run( update_op, feed_dict={ y_pred: np.array([0.4, 0.5]), y_true: np.array([1, 0]) }) sess.run( update_op, feed_dict={ y_pred: np.array([1.0]), y_true: np.array([1]) }) actual_ece = 0.08 + 0.1 expected_ece = sess.run(expected_ece_op) self.assertAlmostEqual(actual_ece, expected_ece)
def test_expected_calibration_error_with_multiple_data_streams(self): """Test expected calibration error when multiple data batches provided.""" y_true, y_pred = self._get_calibration_placeholders() expected_ece_op, update_op = calibration_metrics.expected_calibration_error( y_true, y_pred, nbins=2) with self.test_session() as sess: metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES) sess.run(tf.variables_initializer(var_list=metrics_vars)) # Identical data to test_expected_calibration_error_all_bins_filled, # except split over three batches. sess.run(update_op, feed_dict={ y_pred: np.array([0., 0.2]), y_true: np.array([0, 0]) }) sess.run(update_op, feed_dict={ y_pred: np.array([0.4, 0.5]), y_true: np.array([1, 0]) }) sess.run(update_op, feed_dict={ y_pred: np.array([1.0]), y_true: np.array([1]) }) actual_ece = 0.08 + 0.1 expected_ece = sess.run(expected_ece_op) self.assertAlmostEqual(actual_ece, expected_ece)
def test_expected_calibration_error_all_bins_not_filled(self): """Test expected calibration error when no predictions for one bin.""" y_true, y_pred = self._get_calibration_placeholders() expected_ece_op, update_op = calibration_metrics.expected_calibration_error( y_true, y_pred, nbins=2) with self.test_session() as sess: metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES) sess.run(tf.variables_initializer(var_list=metrics_vars)) # Bin calibration errors (|confidence - accuracy| * bin_weight): # - [0,0.5): |0.2 - 0.333| * (3/5) = 0.08 # - [0.5, 1]: |0.75 - 0.5| * (2/5) = 0.1 sess.run(update_op, feed_dict={ y_pred: np.array([0., 0.2, 0.4]), y_true: np.array([0, 0, 1]) }) actual_ece = np.abs(0.2 - (1 / 3.)) expected_ece = sess.run(expected_ece_op) self.assertAlmostEqual(actual_ece, expected_ece)
def test_expected_calibration_error_all_bins_not_filled(self): """Test expected calibration error when no predictions for one bin.""" y_true, y_pred = self._get_calibration_placeholders() expected_ece_op, update_op = calibration_metrics.expected_calibration_error( y_true, y_pred, nbins=2) with self.test_session() as sess: metrics_vars = tf.get_collection(tf.GraphKeys.METRIC_VARIABLES) sess.run(tf.variables_initializer(var_list=metrics_vars)) # Bin calibration errors (|confidence - accuracy| * bin_weight): # - [0,0.5): |0.2 - 0.333| * (3/5) = 0.08 # - [0.5, 1]: |0.75 - 0.5| * (2/5) = 0.1 sess.run( update_op, feed_dict={ y_pred: np.array([0., 0.2, 0.4]), y_true: np.array([0, 0, 1]) }) actual_ece = np.abs(0.2 - (1 / 3.)) expected_ece = sess.run(expected_ece_op) self.assertAlmostEqual(actual_ece, expected_ece)
def get_estimator_eval_metric_ops(self, eval_dict): """Returns a dictionary of eval metric ops. Note that once value_op is called, the detections and groundtruth added via update_op are cleared. This function can take in groundtruth and detections for a batch of images, or for a single image. For the latter case, the batch dimension for input tensors need not be present. Args: eval_dict: A dictionary that holds tensors for evaluating object detection performance. For single-image evaluation, this dictionary may be produced from eval_util.result_dict_for_single_example(). If multi-image evaluation, `eval_dict` should contain the fields 'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to properly unpad the tensors from the batch. Returns: a dictionary of metric names to tuple of value_op and update_op that can be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all update ops must be run together and similarly all value ops must be run together to guarantee correct behaviour. """ # Unpack items from the evaluation dictionary. input_data_fields = standard_fields.InputDataFields detection_fields = standard_fields.DetectionResultFields image_id = eval_dict[input_data_fields.key] groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes] groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes] detection_boxes = eval_dict[detection_fields.detection_boxes] detection_scores = eval_dict[detection_fields.detection_scores] detection_classes = eval_dict[detection_fields.detection_classes] num_gt_boxes_per_image = eval_dict.get( 'num_groundtruth_boxes_per_image', None) num_det_boxes_per_image = eval_dict.get('num_det_boxes_per_image', None) is_annotated_batched = eval_dict.get('is_annotated', None) if not image_id.shape.as_list(): # Apply a batch dimension to all tensors. image_id = tf.expand_dims(image_id, 0) groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0) groundtruth_classes = tf.expand_dims(groundtruth_classes, 0) detection_boxes = tf.expand_dims(detection_boxes, 0) detection_scores = tf.expand_dims(detection_scores, 0) detection_classes = tf.expand_dims(detection_classes, 0) if num_gt_boxes_per_image is None: num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2] else: num_gt_boxes_per_image = tf.expand_dims( num_gt_boxes_per_image, 0) if num_det_boxes_per_image is None: num_det_boxes_per_image = tf.shape(detection_boxes)[1:2] else: num_det_boxes_per_image = tf.expand_dims( num_det_boxes_per_image, 0) if is_annotated_batched is None: is_annotated_batched = tf.constant([True]) else: is_annotated_batched = tf.expand_dims(is_annotated_batched, 0) else: if num_gt_boxes_per_image is None: num_gt_boxes_per_image = tf.tile( tf.shape(groundtruth_boxes)[1:2], multiples=tf.shape(groundtruth_boxes)[0:1]) if num_det_boxes_per_image is None: num_det_boxes_per_image = tf.tile( tf.shape(detection_boxes)[1:2], multiples=tf.shape(detection_boxes)[0:1]) if is_annotated_batched is None: is_annotated_batched = tf.ones_like(image_id, dtype=tf.bool) # Filter images based on is_annotated_batched and match detections. image_info = [ tf.boolean_mask(tensor, is_annotated_batched) for tensor in [ groundtruth_boxes, groundtruth_classes, num_gt_boxes_per_image, detection_boxes, detection_classes, num_det_boxes_per_image ] ] is_class_matched = tf.map_fn(self.match_single_image_info, image_info, dtype=tf.int64) y_true = tf.squeeze(is_class_matched) y_pred = tf.squeeze( tf.boolean_mask(detection_scores, is_annotated_batched)) ece, update_op = calibration_metrics.expected_calibration_error( y_true, y_pred) return {'CalibrationError/ExpectedCalibrationError': (ece, update_op)}
def get_estimator_eval_metric_ops(self, eval_dict): """Returns a dictionary of eval metric ops. Note that once value_op is called, the detections and groundtruth added via update_op are cleared. This function can take in groundtruth and detections for a batch of images, or for a single image. For the latter case, the batch dimension for input tensors need not be present. Args: eval_dict: A dictionary that holds tensors for evaluating object detection performance. For single-image evaluation, this dictionary may be produced from eval_util.result_dict_for_single_example(). If multi-image evaluation, `eval_dict` should contain the fields 'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to properly unpad the tensors from the batch. Returns: a dictionary of metric names to tuple of value_op and update_op that can be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all update ops must be run together and similarly all value ops must be run together to guarantee correct behaviour. """ # Unpack items from the evaluation dictionary. input_data_fields = standard_fields.InputDataFields detection_fields = standard_fields.DetectionResultFields image_id = eval_dict[input_data_fields.key] groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes] groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes] detection_boxes = eval_dict[detection_fields.detection_boxes] detection_scores = eval_dict[detection_fields.detection_scores] detection_classes = eval_dict[detection_fields.detection_classes] num_gt_boxes_per_image = eval_dict.get( 'num_groundtruth_boxes_per_image', None) num_det_boxes_per_image = eval_dict.get('num_det_boxes_per_image', None) is_annotated_batched = eval_dict.get('is_annotated', None) if not image_id.shape.as_list(): # Apply a batch dimension to all tensors. image_id = tf.expand_dims(image_id, 0) groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0) groundtruth_classes = tf.expand_dims(groundtruth_classes, 0) detection_boxes = tf.expand_dims(detection_boxes, 0) detection_scores = tf.expand_dims(detection_scores, 0) detection_classes = tf.expand_dims(detection_classes, 0) if num_gt_boxes_per_image is None: num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2] else: num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0) if num_det_boxes_per_image is None: num_det_boxes_per_image = tf.shape(detection_boxes)[1:2] else: num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0) if is_annotated_batched is None: is_annotated_batched = tf.constant([True]) else: is_annotated_batched = tf.expand_dims(is_annotated_batched, 0) else: if num_gt_boxes_per_image is None: num_gt_boxes_per_image = tf.tile( tf.shape(groundtruth_boxes)[1:2], multiples=tf.shape(groundtruth_boxes)[0:1]) if num_det_boxes_per_image is None: num_det_boxes_per_image = tf.tile( tf.shape(detection_boxes)[1:2], multiples=tf.shape(detection_boxes)[0:1]) if is_annotated_batched is None: is_annotated_batched = tf.ones_like(image_id, dtype=tf.bool) # Filter images based on is_annotated_batched and match detections. image_info = [tf.boolean_mask(tensor, is_annotated_batched) for tensor in [groundtruth_boxes, groundtruth_classes, num_gt_boxes_per_image, detection_boxes, detection_classes, num_det_boxes_per_image]] is_class_matched = tf.map_fn( self.match_single_image_info, image_info, dtype=tf.int64) y_true = tf.squeeze(is_class_matched) y_pred = tf.squeeze(tf.boolean_mask(detection_scores, is_annotated_batched)) ece, update_op = calibration_metrics.expected_calibration_error( y_true, y_pred) return {'CalibrationError/ExpectedCalibrationError': (ece, update_op)}