def __init__(self, dataset_dir=None): if dataset_dir: self.paths = ConfigPaths(dataset_dir) else: self.paths = ConfigPaths(dtst_dir)
def __init__(self): self.paths = ConfigPaths(dataset_dir)
import pandas as pd from os.path import join from argparse import ArgumentParser """ YOLO has 3 types of file: 1. image.jpg 2. image.txt --> 5 columns ==> class, xmin, ymin, w, h | normalized 3. classes.txt """ if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--dataset_dir', help='Root folder of dataset.') dataset_dir = '' paths = ConfigPaths(dataset_dir) df = pd.read_csv(join(paths.standard_format_dir, 'dataset.csv'), index_col=0) for index, row in df.iterrows(): frame_name = row['frame_name'] classes = eval(row['class']) xmins = eval(row['xmin']) ymins = eval(row['ymin']) xmaxs = eval(row['xmax']) ymaxs = eval(row['ymax']) width = row['width'] height = row['height'] with open( join(paths.yolo_v5_pytorch_labels_dir,
from object_detection_dataset.constants._path_creator import ConfigPaths if __name__ == '__main__': root_folder = 'E:\\Data Sets\\Detection\\Maritime\\COCO x SEAGULL\\' paths = ConfigPaths(root_folder, make_dirs=True)
categories, supercategories = [], [] for category_id in category_ids: for val in self.data['categories']: if val['id'] == category_id: categories.append(val['name']) supercategories.append(val['supercategory']) return categories, supercategories def __find_bbox_of_id(self, image_id: int): total_bboxes = [] category_ids = [] id_list = [] for val in self.data['annotations']: if val['image_id'] == image_id: total_bboxes.append(val['bbox']) category_ids.append(val['category_id']) id_list.append(val['id']) return total_bboxes, category_ids, id_list if __name__ == '__main__': dataset_dir = 'E:\Data Sets\Detection\COCO\outputs\original_format' # dataset_dir = 'D:\Documents\Computer Vision\Object Detection\Datasets\COCO' paths = ConfigPaths(dataset_dir, False) json_path = os_path_join(dataset_dir, 'instances_train2017.json') handler = COCO_JSON_Handler(dataset_dir, json_path, extract_data=True) handler.set_json_dir(dataset_dir) handler.show_all_categories() handler.extract_categories(dataset_dir)
import os import pandas as pd from object_detection_dataset.constants._path_creator import ConfigPaths import shutil if __name__ == '__main__': coco__folder = 'E:\\Data Sets\\Detection\\COCO\\' coco_paths = ConfigPaths(coco__folder, make_dirs=True) coco_x_seagull_folder = 'E:\\Data Sets\\Detection\\Maritime\\COCO x SEAGULL\\' coco_x_seagull_paths = ConfigPaths(coco_x_seagull_folder, make_dirs=True) coco_x_seagull_df = pd.read_csv(os.path.join(coco_x_seagull_paths.standard_format_dir, 'coco_x_seagull.csv')) for index, row in coco_x_seagull_df.iterrows(): image_name = row['filename'] src = os.path.join(coco_paths.images_dir, 'train2017', image_name) dst = os.path.join(coco_x_seagull_paths.images_dir, image_name) print('copying', image_name) print('From:', src) print('To:', dst) shutil.copy(src, dst)
def __init__(self, dataset_dir: str): self.paths = ConfigPaths(dataset_dir, make_dirs=False) self.standard_csv_path = os_path_join(self.paths.standard_format_dir, 'all.csv')