options = parser.parse_args() return options if __name__ == '__main__': options = parse_args() plasm = ecto.Plasm() #setup the input source, grayscale conversion trainer = Trainer(path='/wg/stor2a/vrabaud/workspace/recognition_kitchen_groovy/build/buildspace/lib/object_recognition_reconstruction') model_filler = ModelFiller() #connect up the pose_est plasm.connect(trainer['detector'] >> model_filler['detector']) object_id = 'whoolite' writer = ModelWriter(session_ids=list_to_cpp_json_str([]), object_id=object_id, db_params=ObjectDbParameters({'type': 'CouchDB', 'root': 'http://bwl.willowgarage.com:5984', 'collection': 'object_recognition'}), method=LinemodDetectionPipeline.type_name(), json_submethod=dict_to_cpp_json_str({}), json_params=dict_to_cpp_json_str({})) plasm.connect(model_filler["db_document"] >> writer["db_document"]) options.niter = 1 run_plasm(options, plasm, locals=vars())
db_params = ObjectDbParameters({ 'type': 'CouchDB', 'root': 'http://bwl.willowgarage.com:5984', 'collection': 'object_recognition' }) object_db = ObjectDb(db_params) #setup the input source, grayscale conversion from ecto_openni import VGA_RES, FPS_30 source = create_source('image_pipeline', 'OpenNISource', image_mode=VGA_RES, image_fps=FPS_30) print LinemodDetectionPipeline.type_name() object_ids = ['whoolite', 'tilex'] model_documents = Models(object_db, object_ids, LinemodDetectionPipeline.type_name(), json_helper.dict_to_cpp_json_str({})) print len(model_documents) detector = Detector(model_documents=model_documents, db=object_db, threshold=90) #connect up the pose_est plasm.connect(source['image'] >> detector['image'], source['depth'] >> detector['depth']) plasm.connect(source['image'] >> imshow(name='source')[:]) if 0:
if __name__ == '__main__': options = parse_args() plasm = ecto.Plasm() db_params = ObjectDbParameters({'type': 'CouchDB', 'root': 'http://bwl.willowgarage.com:5984', 'collection': 'object_recognition'}) object_db = ObjectDb(db_params) #setup the input source, grayscale conversion from ecto_openni import VGA_RES, FPS_30 source = create_source('image_pipeline','OpenNISource',image_mode=VGA_RES,image_fps=FPS_30) print LinemodDetectionPipeline.type_name() object_ids = ['whoolite', 'tilex'] model_documents = Models(object_db, object_ids, LinemodDetectionPipeline.type_name(), json_helper.dict_to_cpp_json_str({})) print len(model_documents) detector = Detector(model_documents=model_documents, db=object_db, threshold=90) #connect up the pose_est plasm.connect(source['image'] >> detector['image'], source['depth'] >> detector['depth'] ) plasm.connect(source['image'] >> imshow(name='source')[:]) if 0: import ecto_ros import ecto_ros.ecto_sensor_msgs import sys
#setup the input source, grayscale conversion trainer = Trainer( path= '/wg/stor2a/vrabaud/workspace/recognition_kitchen_groovy/build/buildspace/lib/object_recognition_reconstruction' ) model_filler = ModelFiller() #connect up the pose_est plasm.connect(trainer['detector'] >> model_filler['detector']) object_id = 'whoolite' writer = ModelWriter(session_ids=list_to_cpp_json_str([]), object_id=object_id, db_params=ObjectDbParameters({ 'type': 'CouchDB', 'root': 'http://bwl.willowgarage.com:5984', 'collection': 'object_recognition' }), method=LinemodDetectionPipeline.type_name(), json_submethod=dict_to_cpp_json_str({}), json_params=dict_to_cpp_json_str({})) plasm.connect(model_filler["db_document"] >> writer["db_document"]) options.niter = 1 run_plasm(options, plasm, locals=vars())