コード例 #1
0
ファイル: test_konnoohmachi.py プロジェクト: jshridha/obspy
 def test_smoothingMatrix(self):
     """
     Tests some aspects of the matrix.
     """
     # Disable div by zero errors.
     temp = np.geterr()
     np.seterr(all="ignore")
     frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0], dtype=np.float32)
     matrix = calculate_smoothing_matrix(frequencies, 20.0)
     self.assertEqual(matrix.dtype, np.float32)
     for _i, freq in enumerate(frequencies):
         np.testing.assert_array_equal(matrix[_i], konno_ohmachi_smoothing_window(frequencies, freq, 20.0))
         # Should not be normalized. Test only for larger frequencies
         # because smaller ones have a smaller window.
         if freq >= 10.0:
             self.assertGreater(matrix[_i].sum(), 1.0)
     # Input should be output dtype.
     frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0], dtype=np.float64)
     matrix = calculate_smoothing_matrix(frequencies, 20.0)
     self.assertEqual(matrix.dtype, np.float64)
     # Check normalization.
     frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0], dtype=np.float32)
     matrix = calculate_smoothing_matrix(frequencies, 20.0, normalize=True)
     self.assertEqual(matrix.dtype, np.float32)
     for _i, freq in enumerate(frequencies):
         np.testing.assert_array_equal(
             matrix[_i], konno_ohmachi_smoothing_window(frequencies, freq, 20.0, normalize=True)
         )
         # Should not be normalized. Test only for larger frequencies
         # because smaller ones have a smaller window.
         self.assertAlmostEqual(matrix[_i].sum(), 1.0, 5)
     np.seterr(**temp)
コード例 #2
0
ファイル: test_konnoohmachi.py プロジェクト: jshridha/obspy
 def test_smoothingWindow(self):
     """
     Tests the creation of the smoothing window.
     """
     # Disable div by zero errors.
     temp = np.geterr()
     np.seterr(all="ignore")
     # Frequency of zero results in a delta peak at zero (there usually
     # should be just one zero in the frequency array.
     window = konno_ohmachi_smoothing_window(np.array([0, 1, 0, 3], dtype=np.float32), 0)
     np.testing.assert_array_equal(window, np.array([1, 0, 1, 0], dtype=np.float32))
     # Wrong dtypes raises.
     self.assertRaises(ValueError, konno_ohmachi_smoothing_window, np.arange(10, dtype=np.int32), 10)
     # If frequency=center frequency, log results in infinity. Limit of
     # whole formulae is 1.
     window = konno_ohmachi_smoothing_window(np.array([5.0, 1.0, 5.0, 2.0], dtype=np.float32), 5)
     np.testing.assert_array_equal(window[[0, 2]], np.array([1.0, 1.0], dtype=np.float32))
     # Output dtype should be the dtype of frequencies.
     self.assertEqual(konno_ohmachi_smoothing_window(np.array([1, 6, 12], dtype=np.float32), 5).dtype, np.float32)
     self.assertEqual(konno_ohmachi_smoothing_window(np.array([1, 6, 12], dtype=np.float64), 5).dtype, np.float64)
     # Check if normalizing works.
     window = konno_ohmachi_smoothing_window(self.frequencies, 20)
     self.assertGreater(window.sum(), 1.0)
     window = konno_ohmachi_smoothing_window(self.frequencies, 20, normalize=True)
     self.assertAlmostEqual(window.sum(), 1.0, 5)
     # Just one more to test if there are no invalid values and the range if
     # ok.
     window = konno_ohmachi_smoothing_window(self.frequencies, 20)
     self.assertEqual(np.any(np.isnan(window)), False)
     self.assertEqual(np.any(np.isinf(window)), False)
     self.assertTrue(np.all(window <= 1.0))
     self.assertTrue(np.all(window >= 0.0))
     np.seterr(**temp)
コード例 #3
0
 def test_smoothing_matrix(self):
     """
     Tests some aspects of the matrix.
     """
     # Disable div by zero errors.
     with np.errstate(all='ignore'):
         frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0],
                                dtype=np.float32)
         matrix = calculate_smoothing_matrix(frequencies, 20.0)
         self.assertEqual(matrix.dtype, np.float32)
         for _i, freq in enumerate(frequencies):
             np.testing.assert_array_equal(
                 matrix[_i],
                 konno_ohmachi_smoothing_window(frequencies, freq, 20.0))
             # Should not be normalized. Test only for larger frequencies
             # because smaller ones have a smaller window.
             if freq >= 10.0:
                 self.assertGreater(matrix[_i].sum(), 1.0)
         # Input should be output dtype.
         frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0],
                                dtype=np.float64)
         matrix = calculate_smoothing_matrix(frequencies, 20.0)
         self.assertEqual(matrix.dtype, np.float64)
         # Check normalization.
         frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0],
                                dtype=np.float32)
         matrix = calculate_smoothing_matrix(frequencies,
                                             20.0,
                                             normalize=True)
         self.assertEqual(matrix.dtype, np.float32)
         for _i, freq in enumerate(frequencies):
             np.testing.assert_array_equal(
                 matrix[_i],
                 konno_ohmachi_smoothing_window(frequencies,
                                                freq,
                                                20.0,
                                                normalize=True))
             # Should not be normalized. Test only for larger frequencies
             # because smaller ones have a smaller window.
             self.assertAlmostEqual(matrix[_i].sum(), 1.0, 5)
コード例 #4
0
 def test_smoothing_window(self):
     """
     Tests the creation of the smoothing window.
     """
     # Disable div by zero errors.
     with np.errstate(all='ignore'):
         # Frequency of zero results in a delta peak at zero (there usually
         # should be just one zero in the frequency array.
         window = konno_ohmachi_smoothing_window(
             np.array([0, 1, 0, 3], dtype=np.float32), 0)
         np.testing.assert_array_equal(
             window, np.array([1, 0, 1, 0], dtype=np.float32))
         # Wrong dtypes raises.
         self.assertRaises(ValueError, konno_ohmachi_smoothing_window,
                           np.arange(10, dtype=np.int32), 10)
         # If frequency=center frequency, log results in infinity. Limit of
         # whole formulae is 1.
         window = konno_ohmachi_smoothing_window(
             np.array([5.0, 1.0, 5.0, 2.0], dtype=np.float32), 5)
         np.testing.assert_array_equal(
             window[[0, 2]], np.array([1.0, 1.0], dtype=np.float32))
         # Output dtype should be the dtype of frequencies.
         self.assertEqual(
             konno_ohmachi_smoothing_window(
                 np.array([1, 6, 12], dtype=np.float32), 5).dtype,
             np.float32)
         self.assertEqual(
             konno_ohmachi_smoothing_window(
                 np.array([1, 6, 12], dtype=np.float64), 5).dtype,
             np.float64)
         # Check if normalizing works.
         window = konno_ohmachi_smoothing_window(self.frequencies, 20)
         self.assertGreater(window.sum(), 1.0)
         window = konno_ohmachi_smoothing_window(self.frequencies,
                                                 20,
                                                 normalize=True)
         self.assertAlmostEqual(window.sum(), 1.0, 5)
         # Just one more to test if there are no invalid values and the
         # range if ok.
         window = konno_ohmachi_smoothing_window(self.frequencies, 20)
         self.assertEqual(np.any(np.isnan(window)), False)
         self.assertEqual(np.any(np.isinf(window)), False)
         self.assertTrue(np.all(window <= 1.0))
         self.assertTrue(np.all(window >= 0.0))