コード例 #1
0
    def test_ppsd_restricted_stacks(self, state, image_path):
        """
        Test PPSD.calculate_histogram() with restrictions to what data should
        be stacked. Also includes image tests.
        """
        # set up a bogus PPSD, with fixed random psds but with real start times
        # of psd pieces, to facilitate testing the stack selection.
        ppsd = PPSD(stats=Stats(dict(sampling_rate=150)),
                    metadata=None,
                    db_bins=(-200, -50, 20.),
                    period_step_octaves=1.4)
        # change data to nowadays used nanoseconds POSIX timestamp
        ppsd._times_processed = [
            UTCDateTime(t)._ns for t in np.load(
                os.path.join(state.path, "ppsd_times_processed.npy")).tolist()
        ]
        np.random.seed(1234)
        ppsd._binned_psds = [
            arr for arr in np.random.uniform(-200, -50, (
                len(ppsd._times_processed), len(ppsd.period_bin_centers)))
        ]

        # Test callback function that selects a fixed random set of the
        # timestamps.  Also checks that we get passed the type we expect,
        # which is 1D numpy ndarray of int type.
        def callback(t_array):
            assert isinstance(t_array, np.ndarray)
            assert t_array.shape == (len(ppsd._times_processed), )
            assert np.issubdtype(t_array.dtype, np.integer)
            np.random.seed(1234)
            res = np.random.randint(0, 2, len(t_array)).astype(bool)
            return res

        # test several different sets of stack criteria, should cover
        # everything, even with lots of combined criteria
        stack_criteria_list = [
            dict(starttime=UTCDateTime(2015, 3, 8), month=[2, 3, 5, 7, 8]),
            dict(endtime=UTCDateTime(2015, 6, 7),
                 year=[2015],
                 time_of_weekday=[(1, 0, 24), (2, 0, 24), (-1, 0, 11)]),
            dict(year=[2013, 2014, 2016, 2017], month=[2, 3, 4]),
            dict(month=[1, 2, 5, 6, 8], year=2015),
            dict(isoweek=[4, 5, 6, 13, 22, 23, 24, 44, 45]),
            dict(time_of_weekday=[(5, 22, 24), (6, 0, 2), (6, 22, 24)]),
            dict(callback=callback, month=[1, 3, 5, 7]),
            dict(callback=callback)
        ]
        expected_selections = np.load(
            os.path.join(state.path, "ppsd_stack_selections.npy"))

        # test every set of criteria
        for stack_criteria, expected_selection in zip(stack_criteria_list,
                                                      expected_selections):
            selection_got = ppsd._stack_selection(**stack_criteria)
            np.testing.assert_array_equal(selection_got, expected_selection)

        plot_kwargs = dict(max_percentage=15,
                           xaxis_frequency=True,
                           period_lim=(0.01, 50))
        ppsd.calculate_histogram(**stack_criteria_list[1])
        fig = ppsd.plot(show=False, **plot_kwargs)

        fig.axes[1].set_xlim(left=fig.axes[1].get_xlim()[0] - 2)
        image_path_1 = image_path.parent / 'test_ppsd_restricted_stacks_1.png'
        with np.errstate(under='ignore'):
            fig.savefig(image_path_1)

        # test it again, checking that updating an existing plot with different
        # stack selection works..
        #  a) we start with the stack for the expected image and test that it
        #     matches (like above):
        ppsd.calculate_histogram(**stack_criteria_list[1])
        image_path_2 = image_path.parent / 'test_ppsd_restricted_stacks_2.png'
        with np.errstate(under='ignore'):
            fig.savefig(image_path_2)

        ppsd.calculate_histogram(**stack_criteria_list[1])
        image_path_3 = image_path.parent / 'test_ppsd_restricted_stacks_3.png'
        ppsd._plot_histogram(fig=fig, draw=True)
        with np.errstate(under='ignore'):
            fig.savefig(image_path_3)
コード例 #2
0
    def test_ppsd_restricted_stacks(self):
        """
        Test PPSD.calculate_histogram() with restrictions to what data should
        be stacked. Also includes image tests.
        """
        # set up a bogus PPSD, with fixed random psds but with real start times
        # of psd pieces, to facilitate testing the stack selection.
        ppsd = PPSD(stats=Stats(dict(sampling_rate=150)),
                    metadata=None,
                    db_bins=(-200, -50, 20.),
                    period_step_octaves=1.4)
        # change data to nowadays used nanoseconds POSIX timestamp
        ppsd._times_processed = [
            UTCDateTime(t)._ns for t in np.load(
                os.path.join(self.path, "ppsd_times_processed.npy")).tolist()
        ]
        np.random.seed(1234)
        ppsd._binned_psds = [
            arr for arr in np.random.uniform(-200, -50, (
                len(ppsd._times_processed), len(ppsd.period_bin_centers)))
        ]

        # Test callback function that selects a fixed random set of the
        # timestamps.  Also checks that we get passed the type we expect,
        # which is 1D numpy ndarray of int type.
        def callback(t_array):
            self.assertIsInstance(t_array, np.ndarray)
            self.assertEqual(t_array.shape, (len(ppsd._times_processed), ))
            self.assertTrue(np.issubdtype(t_array.dtype, np.integer))
            np.random.seed(1234)
            res = np.random.randint(0, 2, len(t_array)).astype(np.bool)
            return res

        # test several different sets of stack criteria, should cover
        # everything, even with lots of combined criteria
        stack_criteria_list = [
            dict(starttime=UTCDateTime(2015, 3, 8), month=[2, 3, 5, 7, 8]),
            dict(endtime=UTCDateTime(2015, 6, 7),
                 year=[2015],
                 time_of_weekday=[(1, 0, 24), (2, 0, 24), (-1, 0, 11)]),
            dict(year=[2013, 2014, 2016, 2017], month=[2, 3, 4]),
            dict(month=[1, 2, 5, 6, 8], year=2015),
            dict(isoweek=[4, 5, 6, 13, 22, 23, 24, 44, 45]),
            dict(time_of_weekday=[(5, 22, 24), (6, 0, 2), (6, 22, 24)]),
            dict(callback=callback, month=[1, 3, 5, 7]),
            dict(callback=callback)
        ]
        expected_selections = np.load(
            os.path.join(self.path, "ppsd_stack_selections.npy"))

        # test every set of criteria
        for stack_criteria, expected_selection in zip(stack_criteria_list,
                                                      expected_selections):
            selection_got = ppsd._stack_selection(**stack_criteria)
            np.testing.assert_array_equal(selection_got, expected_selection)

        # test one particular selection as an image test
        plot_kwargs = dict(max_percentage=15,
                           xaxis_frequency=True,
                           period_lim=(0.01, 50))
        ppsd.calculate_histogram(**stack_criteria_list[1])
        with ImageComparison(self.path_images,
                             'ppsd_restricted_stack.png',
                             reltol=1.5) as ic:
            fig = ppsd.plot(show=False, **plot_kwargs)
            # some matplotlib/Python version combinations lack the left-most
            # tick/label "Jan 2015". Try to circumvent and get the (otherwise
            # OK) test by changing the left x limit a bit further out (by two
            # days, axis is in mpl days). See e.g.
            # https://tests.obspy.org/30657/#1
            fig.axes[1].set_xlim(left=fig.axes[1].get_xlim()[0] - 2)
            with np.errstate(under='ignore'):
                fig.savefig(ic.name)

        # test it again, checking that updating an existing plot with different
        # stack selection works..
        #  a) we start with the stack for the expected image and test that it
        #     matches (like above):
        ppsd.calculate_histogram(**stack_criteria_list[1])
        with ImageComparison(self.path_images,
                             'ppsd_restricted_stack.png',
                             reltol=1.5,
                             plt_close_all_exit=False) as ic:
            fig = ppsd.plot(show=False, **plot_kwargs)
            # some matplotlib/Python version combinations lack the left-most
            # tick/label "Jan 2015". Try to circumvent and get the (otherwise
            # OK) test by changing the left x limit a bit further out (by two
            # days, axis is in mpl days). See e.g.
            # https://tests.obspy.org/30657/#1
            fig.axes[1].set_xlim(left=fig.axes[1].get_xlim()[0] - 2)
            with np.errstate(under='ignore'):
                fig.savefig(ic.name)
        #  b) now reuse figure and set the histogram with a different stack,
        #     image test should fail:
        ppsd.calculate_histogram(**stack_criteria_list[3])
        try:
            with ImageComparison(self.path_images,
                                 'ppsd_restricted_stack.png',
                                 adjust_tolerance=False,
                                 plt_close_all_enter=False,
                                 plt_close_all_exit=False) as ic:
                # rms of the valid comparison above is ~31,
                # rms of the invalid comparison we test here is ~36
                if MATPLOTLIB_VERSION == [1, 1, 1]:
                    ic.tol = 33
                ppsd._plot_histogram(fig=fig, draw=True)
                with np.errstate(under='ignore'):
                    fig.savefig(ic.name)
        except ImageComparisonException:
            pass
        else:
            msg = "Expected ImageComparisonException was not raised."
            self.fail(msg)
        #  c) now reuse figure and set the original histogram stack again,
        #     image test should pass agin:
        ppsd.calculate_histogram(**stack_criteria_list[1])
        with ImageComparison(self.path_images,
                             'ppsd_restricted_stack.png',
                             reltol=1.5,
                             plt_close_all_enter=False) as ic:
            ppsd._plot_histogram(fig=fig, draw=True)
            with np.errstate(under='ignore'):
                fig.savefig(ic.name)
コード例 #3
0
    def test_ppsd_restricted_stacks(self):
        """
        Test PPSD.calculate_histogram() with restrictions to what data should
        be stacked. Also includes image tests.
        """
        # set up a bogus PPSD, with fixed random psds but with real start times
        # of psd pieces, to facilitate testing the stack selection.
        ppsd = PPSD(stats=Stats(dict(sampling_rate=150)), metadata=None,
                    db_bins=(-200, -50, 20.), period_step_octaves=1.4)
        ppsd._times_processed = np.load(
            os.path.join(self.path, "ppsd_times_processed.npy")).tolist()
        np.random.seed(1234)
        ppsd._binned_psds = [
            arr for arr in np.random.uniform(
                -200, -50,
                (len(ppsd._times_processed), len(ppsd.period_bin_centers)))]

        # Test callback function that selects a fixed random set of the
        # timestamps.  Also checks that we get passed the type we expect,
        # which is 1D numpy ndarray of float type.
        def callback(t_array):
            self.assertIsInstance(t_array, np.ndarray)
            self.assertEqual(t_array.shape, (len(ppsd._times_processed),))
            self.assertEqual(t_array.dtype, np.float64)
            np.random.seed(1234)
            res = np.random.randint(0, 2, len(t_array)).astype(np.bool)
            return res

        # test several different sets of stack criteria, should cover
        # everything, even with lots of combined criteria
        stack_criteria_list = [
            dict(starttime=UTCDateTime(2015, 3, 8), month=[2, 3, 5, 7, 8]),
            dict(endtime=UTCDateTime(2015, 6, 7), year=[2015],
                 time_of_weekday=[(1, 0, 24), (2, 0, 24), (-1, 0, 11)]),
            dict(year=[2013, 2014, 2016, 2017], month=[2, 3, 4]),
            dict(month=[1, 2, 5, 6, 8], year=2015),
            dict(isoweek=[4, 5, 6, 13, 22, 23, 24, 44, 45]),
            dict(time_of_weekday=[(5, 22, 24), (6, 0, 2), (6, 22, 24)]),
            dict(callback=callback, month=[1, 3, 5, 7]),
            dict(callback=callback)]
        expected_selections = np.load(
            os.path.join(self.path, "ppsd_stack_selections.npy"))

        # test every set of criteria
        for stack_criteria, expected_selection in zip(
                stack_criteria_list, expected_selections):
            selection_got = ppsd._stack_selection(**stack_criteria)
            np.testing.assert_array_equal(selection_got, expected_selection)

        # test one particular selection as an image test
        plot_kwargs = dict(max_percentage=15, xaxis_frequency=True,
                           period_lim=(0.01, 50))
        ppsd.calculate_histogram(**stack_criteria_list[1])
        with ImageComparison(self.path_images,
                             'ppsd_restricted_stack.png', reltol=1.5) as ic:
            fig = ppsd.plot(show=False, **plot_kwargs)
            # some matplotlib/Python version combinations lack the left-most
            # tick/label "Jan 2015". Try to circumvent and get the (otherwise
            # OK) test by changing the left x limit a bit further out (by two
            # days, axis is in mpl days). See e.g.
            # https://tests.obspy.org/30657/#1
            fig.axes[1].set_xlim(left=fig.axes[1].get_xlim()[0] - 2)
            with np.errstate(under='ignore'):
                fig.savefig(ic.name)

        # test it again, checking that updating an existing plot with different
        # stack selection works..
        #  a) we start with the stack for the expected image and test that it
        #     matches (like above):
        ppsd.calculate_histogram(**stack_criteria_list[1])
        with ImageComparison(self.path_images,
                             'ppsd_restricted_stack.png', reltol=1.5,
                             plt_close_all_exit=False) as ic:
            fig = ppsd.plot(show=False, **plot_kwargs)
            # some matplotlib/Python version combinations lack the left-most
            # tick/label "Jan 2015". Try to circumvent and get the (otherwise
            # OK) test by changing the left x limit a bit further out (by two
            # days, axis is in mpl days). See e.g.
            # https://tests.obspy.org/30657/#1
            fig.axes[1].set_xlim(left=fig.axes[1].get_xlim()[0] - 2)
            with np.errstate(under='ignore'):
                fig.savefig(ic.name)
        #  b) now reuse figure and set the histogram with a different stack,
        #     image test should fail:
        ppsd.calculate_histogram(**stack_criteria_list[3])
        try:
            with ImageComparison(self.path_images,
                                 'ppsd_restricted_stack.png',
                                 adjust_tolerance=False,
                                 plt_close_all_enter=False,
                                 plt_close_all_exit=False) as ic:
                # rms of the valid comparison above is ~31,
                # rms of the invalid comparison we test here is ~36
                if MATPLOTLIB_VERSION == [1, 1, 1]:
                    ic.tol = 33
                ppsd._plot_histogram(fig=fig, draw=True)
                with np.errstate(under='ignore'):
                    fig.savefig(ic.name)
        except ImageComparisonException:
            pass
        else:
            msg = "Expected ImageComparisonException was not raised."
            self.fail(msg)
        #  c) now reuse figure and set the original histogram stack again,
        #     image test should pass agin:
        ppsd.calculate_histogram(**stack_criteria_list[1])
        with ImageComparison(self.path_images,
                             'ppsd_restricted_stack.png', reltol=1.5,
                             plt_close_all_enter=False) as ic:
            ppsd._plot_histogram(fig=fig, draw=True)
            with np.errstate(under='ignore'):
                fig.savefig(ic.name)