コード例 #1
0
ファイル: test_trigger.py プロジェクト: celso-iris/obspy
 def test_triggerOnset(self):
     """
     Test trigger onset function
     """
     on_of = np.array([[6.0, 31], [69, 94], [131, 181], [215, 265],
                       [278, 315], [480, 505], [543, 568], [605, 631]])
     cft = np.concatenate((np.sin(np.arange(0, 5 * np.pi, 0.1)) + 1,
                           np.sin(np.arange(0, 5 * np.pi, 0.1)) + 2.1,
                           np.sin(np.arange(0, 5 * np.pi, 0.1)) + 0.4,
                           np.sin(np.arange(0, 5 * np.pi, 0.1)) + 1))
     picks = triggerOnset(cft, 1.5, 1.0, max_len=50)
     np.testing.assert_array_equal(picks, on_of)
     # check that max_len_delete drops the picks
     picks_del = triggerOnset(cft, 1.5, 1.0, max_len=50,
                              max_len_delete=True)
     np.testing.assert_array_equal(picks_del, on_of[np.array([0, 1, 5, 6])])
     #
     # set True for visual understanding the tests
     if False:  # pragma: no cover
         import matplotlib.pyplot as plt
         plt.plot(cft)
         plt.hlines([1.5, 1.0], 0, len(cft))
         on_of = np.array(on_of)
         plt.vlines(picks[:, 0], 1.0, 2.0, color='g', linewidth=2,
                    label="ON max_len")
         plt.vlines(picks[:, 1], 0.5, 1.5, color='r', linewidth=2,
                    label="OF max_len")
         plt.vlines(picks_del[:, 0] + 2, 1.0, 2.0, color='y', linewidth=2,
                    label="ON max_len_delete")
         plt.vlines(picks_del[:, 1] + 2, 0.5, 1.5, color='b', linewidth=2,
                    label="OF max_len_delete")
         plt.legend()
         plt.show()
コード例 #2
0
def trig(self,slta):

    #get values for sta and lta
    tas = slta.split(' ')
    ON = eval(tas[2])
    OFF = eval(tas[3])


    for i in range(len(self)):
        pic = triggerOnset(self[i].data, ON, OFF)
        ooo = str()
        for j in range(len(pic)):
            ooo = ooo + str(pic[j]) 
        self[i].stats['trigger_on']  = ON
        self[i].stats['trigger_off'] = OFF
        self[i].stats['picks'] = ooo

    return self
コード例 #3
0
ファイル: stalta4baynet.py プロジェクト: obspy/branches
            print "Cannot process station %s, no RESP file given" % tr.stats.station
            continue
        # Cannot process a whole day file, split it in smaller junks
        overlap = s2p(30.0, tr)
        olap = overlap
        samp = 0
        df = tr.stats.sampling_rate
        if trId(tr.stats)[1] != last_id or tr.stats.starttime - last_endtime > 1.0 / df:
            data_buf = np.array([], dtype='float64')
            olap = 0
        while samp < tr.stats.npts:
            data = tr.data[samp:samp + nfft - olap].astype('float64')
            data = np.concatenate((data_buf, data))
            data = detrend(data)
            # Correct for frequency response of instrument
            data = seisSim(data, tr.stats.sampling_rate, paz, inst_sim=inst)
            data /= (paz['sensitivity'] / 1e9)  #V/nm/s correct for overall sensitivity
            data = recStalta(data, s2p(2.5, tr), s2p(10.0, tr))
            picked_values = triggerOnset(data, 3.0, 0.5, max_len=overlap)
            #
            for i, j in picked_values:
                 begin = tr.stats.starttime + float(i + samp - olap) / df
                 end = tr.stats.starttime + float(j + samp - olap) / df
                 f.write("%s,%s,%s\n" % (str(begin), str(end), tr.stats.station))
            olap = overlap # only needed for first time in loop
            samp += nfft - overlap
            data_buf = data[-overlap:]
            print '.', # Progress Bar
        last_endtime, last_id = trId(tr.stats)
    f.close()
コード例 #4
0
ファイル: stalta4baynet.py プロジェクト: obspy/branches
        olap = overlap
        samp = 0
        df = tr.stats.sampling_rate
        if trId(
                tr.stats
        )[1] != last_id or tr.stats.starttime - last_endtime > 1.0 / df:
            data_buf = np.array([], dtype='float64')
            olap = 0
        while samp < tr.stats.npts:
            data = tr.data[samp:samp + nfft - olap].astype('float64')
            data = np.concatenate((data_buf, data))
            data = detrend(data)
            # Correct for frequency response of instrument
            data = seisSim(data, tr.stats.sampling_rate, paz, inst_sim=inst)
            data /= (paz['sensitivity'] / 1e9
                     )  #V/nm/s correct for overall sensitivity
            data = recStalta(data, s2p(2.5, tr), s2p(10.0, tr))
            picked_values = triggerOnset(data, 3.0, 0.5, max_len=overlap)
            #
            for i, j in picked_values:
                begin = tr.stats.starttime + float(i + samp - olap) / df
                end = tr.stats.starttime + float(j + samp - olap) / df
                f.write("%s,%s,%s\n" %
                        (str(begin), str(end), tr.stats.station))
            olap = overlap  # only needed for first time in loop
            samp += nfft - overlap
            data_buf = data[-overlap:]
            print '.',  # Progress Bar
        last_endtime, last_id = trId(tr.stats)
    f.close()
コード例 #5
0
            olap = 0
        while samp < tr.stats.npts:
            data = tr.data[samp:samp + nfft - olap].astype('float64')
            data = np.concatenate((data_buf, data))
            data = detrend(data)
            # Correct for frequency response of instrument
            data = seisSim(data,
                           df,
                           paz_remove=tr.stats.paz,
                           paz_simulate=inst,
                           remove_sensitivity=True)
            # XXX is removed in seisSim... ?!
            # XXX data /= (paz['sensitivity'] / 1e9)  #V/nm/s correct for overall sensitivity
            data = bandpass(data, LOW, HIGH, df)
            data = recStalta(data, s2p(STA, tr), s2p(LTA, tr))
            picked_values = triggerOnset(data, ON, OFF, max_len=overlap)
            #
            for i, j in picked_values:
                begin = tr.stats.starttime + float(i + samp - olap) / df
                end = tr.stats.starttime + float(j + samp - olap) / df
                trigger_list.append(
                    (begin.timestamp, end.timestamp, tr.stats.station))
            olap = overlap  # only needed for first time in loop
            samp += nfft - overlap
            data_buf = data[-overlap:]
        last_endtime, last_id = trId(tr.stats)

###############################################################################
# start of coincidence part
###############################################################################
trigger_list.sort()
コード例 #6
0
ファイル: stalta4uh_lt.py プロジェクト: obspy/branches
        tr.data = detrend(tr.data)
    st.simulate(paz_remove="self", paz_simulate=cornFreq2Paz(1.0), remove_sensitivity=False)
    st.sort()
    st_trigger = st.copy()
    st_trigger.filter("bandpass", freqmin=PAR.LOW, freqmax=PAR.HIGH, corners=1, zerophase=True)
    st.trim(T1, T2)
    st_trigger.trim(T1, T2)
    st_trigger.trigger("recstalta", sta=PAR.STA, lta=PAR.LTA)
    summary.append(str(st))

    # do the triggering
    trigger_list = []
    for tr in st_trigger:
        tr.stats.channel = "recstalta"
        max_len = PAR.MAXLEN * tr.stats.sampling_rate
        trigger_sample_list = triggerOnset(tr.data, PAR.ON, PAR.OFF, max_len=max_len)
        for on, off in trigger_sample_list:
             begin = tr.stats.starttime + float(on) / tr.stats.sampling_rate
             end = tr.stats.starttime + float(off) / tr.stats.sampling_rate
             trigger_list.append((begin.timestamp, end.timestamp, tr.stats.station))
    trigger_list.sort()

    # merge waveform and trigger stream for plotting
    # the normalizations are done because the triggers have a completely different
    # scale and would not be visible in the plot otherwise...
    st.filter("bandpass", freqmin=1.0, freqmax=20.0, corners=1, zerophase=True)
    st.normalize(global_max=False)
    st_trigger.normalize(global_max=True)
    st.extend(st_trigger)

    # coincidence part, work through sorted trigger list...
コード例 #7
0
ファイル: stalta4uh.py プロジェクト: obspy/branches
        samp = 0
        df = tr.stats.sampling_rate
        if trId(tr.stats)[1] != last_id or tr.stats.starttime - last_endtime > 1.0 / df:
            data_buf = np.array([], dtype='float64')
            olap = 0
        while samp < tr.stats.npts:
            data = tr.data[samp:samp + nfft - olap].astype('float64')
            data = np.concatenate((data_buf, data))
            data = detrend(data)
            # Correct for frequency response of instrument
            data = seisSim(data, df, paz_remove=tr.stats.paz, paz_simulate=inst, remove_sensitivity=True)
            # XXX is removed in seisSim... ?!
            # XXX data /= (paz['sensitivity'] / 1e9)  #V/nm/s correct for overall sensitivity
            data = bandpass(data, LOW, HIGH, df)
            data = recStalta(data, s2p(STA, tr), s2p(LTA, tr))
            picked_values = triggerOnset(data, ON, OFF, max_len=overlap)
            #
            for i, j in picked_values:
                 begin = tr.stats.starttime + float(i + samp - olap) / df
                 end = tr.stats.starttime + float(j + samp - olap) / df
                 trigger_list.append((begin.timestamp, end.timestamp, tr.stats.station))
            olap = overlap # only needed for first time in loop
            samp += nfft - overlap
            data_buf = data[-overlap:]
        last_endtime, last_id = trId(tr.stats)

###############################################################################
# start of coincidence part
###############################################################################
trigger_list.sort()
#print [(UTCDateTime(i[0]).isoformat(), UTCDateTime(i[1]).isoformat(), i[2]) for i in trigger_list]
コード例 #8
0
ファイル: stalta4uh_lt.py プロジェクト: obspy/branches
                      freqmin=PAR.LOW,
                      freqmax=PAR.HIGH,
                      corners=1,
                      zerophase=True)
    st.trim(T1, T2)
    st_trigger.trim(T1, T2)
    st_trigger.trigger("recstalta", sta=PAR.STA, lta=PAR.LTA)
    summary.append(str(st))

    # do the triggering
    trigger_list = []
    for tr in st_trigger:
        tr.stats.channel = "recstalta"
        max_len = PAR.MAXLEN * tr.stats.sampling_rate
        trigger_sample_list = triggerOnset(tr.data,
                                           PAR.ON,
                                           PAR.OFF,
                                           max_len=max_len)
        for on, off in trigger_sample_list:
            begin = tr.stats.starttime + float(on) / tr.stats.sampling_rate
            end = tr.stats.starttime + float(off) / tr.stats.sampling_rate
            trigger_list.append(
                (begin.timestamp, end.timestamp, tr.stats.station))
    trigger_list.sort()

    # merge waveform and trigger stream for plotting
    # the normalizations are done because the triggers have a completely different
    # scale and would not be visible in the plot otherwise...
    st.filter("bandpass", freqmin=1.0, freqmax=20.0, corners=1, zerophase=True)
    st.normalize(global_max=False)
    st_trigger.normalize(global_max=True)
    st.extend(st_trigger)