コード例 #1
0
    def __init__(
            self,
            recurrent,
            embedding_buckets,
            hidden_size=256,
            img_mean=[0, 0, 0],
            img_std=[1, 1, 1],
            input_shape=(90, 160),
    ):
        super(CNNBase, self).__init__(recurrent, hidden_size, hidden_size)

        init_ = lambda m: init(
            m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0),
            nn.init.calculate_gain("relu"),
        )

        self.img_mean = img_mean
        self.img_std = img_std
        imH, imW = input_shape

        embedding_size = 0
        # Assumes input size is (imH, imW)
        self.rgb_encoder = nn.Sequential(
            init_(nn.Conv2d(3, 2, 3, padding=1)),
            nn.BatchNorm2d(2),
            nn.ReLU(),
            nn.MaxPool2d(2, stride=2),
            init_(nn.Conv2d(2, 1, 3, padding=1)),
            nn.BatchNorm2d(1),
            nn.ReLU(),
            nn.MaxPool2d(2, stride=2),
            init_(nn.Conv2d(1, 1, 3, padding=1)),
            nn.BatchNorm2d(1),
            nn.ReLU(),
            nn.MaxPool2d(2, stride=2),
            Flatten(),
        )
        rgb_encoder_output = self.rgb_encoder(torch.randn(1, 3, imH, imW))
        embedding_size += rgb_encoder_output.shape[1]
        embedding_size += self._create_embeddings(embedding_buckets)

        init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.
                               constant_(x, 0))

        self.fuse_embedding = init_(nn.Linear(embedding_size, hidden_size))
        self.critic_linear = init_(nn.Linear(hidden_size, 1))

        self.train()
コード例 #2
0
    def __init__(self, config):
        super().__init__()
        self.nactions = config.nactions
        self.hidden_size = config.hidden_size
        embedding_buckets = config.EMBEDDING_BUCKETS

        self.base = CNNBase(
            True,
            embedding_buckets,
            hidden_size=self.hidden_size,
            img_mean=config.NORMALIZATION.img_mean,
            img_std=config.NORMALIZATION.img_std,
            input_shape=config.image_scale_hw,
        )

        self.dist = Categorical(self.hidden_size, self.nactions)
        init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.
                               constant_(x, 0))