コード例 #1
0
  def __init__(self, cols, rows, widthMM, heightMM,
               #the x,y and th of the current location can be passed
               currentRow = -1, currentCol = -1, currentTh= 0,
               goalRow = -1, goalCol = -1, gridUpdate = "",
               image=None, grid=None, gridResize=1.0,showIter=0, title=""):

    self.markerToolkit = MarkerToolkit()

    self.x_localizeMM = 0
    self.y_localizeMM = 0
    self.thr_localize = 0
    self.x_last_marker_localizeMM = 0
    self.x_last_marker_robotMM = 0
    self.y_last_marker_localizeMM = 0
    self.y_last_marker_robotMM = 0
    self.thr_last_marker_localize = 0
    self.thr_last_marker_robot = 0

    self.resetMarkers()

    OccupancyGrid.__init__(self, cols=cols, rows=rows, 
                widthMM=widthMM, heightMM=heightMM,
                currentRow=currentRow, currentCol=currentCol, 
                currentTh=currentTh,
                goalRow=goalRow, goalCol=goalCol,
                image=image, grid=grid, gridResize=gridResize, 
		showIter=showIter, title=title)
コード例 #2
0
    def mergeOtherGridInfo(self, otherGrid):

        # find two common markers
        commonKeys = []
        for key in self.markers.keys():
            if otherGrid.markerExists(key):
                commonKeys.append(key)

        if len(commonKeys) < 2:
            print "I can not find two common markers, merge failed!"
            return

        # for now we just use the first two common markers found
        thisGridAnchor1Row = self.getMarkerRow(commonKeys[0])
        thisGridAnchor1Col = self.getMarkerCol(commonKeys[0])
        thisGridAnchor2Row = self.getMarkerRow(commonKeys[1])
        thisGridAnchor2Col = self.getMarkerCol(commonKeys[1])
        otherGridAnchor1Row = otherGrid.getMarkerRow(commonKeys[0])
        otherGridAnchor1Col = otherGrid.getMarkerCol(commonKeys[0])
        otherGridAnchor2Row = otherGrid.getMarkerRow(commonKeys[1])
        otherGridAnchor2Col = otherGrid.getMarkerCol(commonKeys[1])

        return OccupancyGrid.mergeOtherGridInfo(
            self,
            otherGrid,
            thisGridAnchor1Row=thisGridAnchor1Row,
            thisGridAnchor1Col=thisGridAnchor1Col,
            thisGridAnchor2Row=thisGridAnchor2Row,
            thisGridAnchor2Col=thisGridAnchor2Col,
            otherGridAnchor1Row=otherGridAnchor1Row,
            otherGridAnchor1Col=otherGridAnchor1Col,
            otherGridAnchor2Row=otherGridAnchor2Row,
            otherGridAnchor2Col=otherGridAnchor2Col,
        )
コード例 #3
0
  def drawCell(self,row,col,matrix,maxval,path,stepByStep,removeBelow=0):
  # see the occupancyGrid redraw comment for more info on the coordinate
  # system.

      OccupancyGrid.drawCell(self,row,col,matrix,maxval,path,stepByStep,
                             removeBelow)
      x = col
      y = row

      if self.hasMarker(row=row,col=col):
         self.canvas.create_text((x + .5) * self.colScale,
				 (y + .5) * self.rowScale,
				 tag = 'label',
				 text=self.printMarker(row=row,col=col),
				 anchor="center",
				 fill='orange')
コード例 #4
0
# Since our "robot" is actually a shape we need to define our own 2d pose func
# current_pose = get_2d_pose(robot)
target_pose = get_2d_pose(goal)

current_pose =  robot.get_position(vision_sensor)[:2] + robot.get_orientation()[-1:]
current_pose = (-current_pose[0], current_pose[1], current_pose[2])

print(current_pose)
print(get_2d_pose(robot))

pr.step()
origin_x, _, origin_y, _, _, _ = vision_sensor.get_bounding_box()

# Setup occ_grid
occ_grid = OccupancyGrid(origin_x, origin_y)

depth = vision_sensor.capture_depth()
occ_grid.fromDepth(depth)

'''
dij_solver = Dijkstra(occ_grid, current_pose, target_pose)
moves = dij_solver.solve()
for i in moves:
  pr.step()
  set_2d_pose(robot, (i[0], i[1], current_pose[2]))
  time.sleep(0.05)
'''

'''
# RRT Solver
コード例 #5
0
    # Get Scene
    SCENE_FILE = join(dirname(abspath(__file__)), 'scenes/scene_cpp.ttt')

    # Start Simulation
    pr = PyRep()
    pr.launch(SCENE_FILE, headless=False)
    pr.start()
    robot = Shape('start_pose')
    vision_sensor = VisionSensor('vision_sensor')

    # Generate a random map
    randomMapGenerator.generate_random_map(no_of_objects, False)

    # Setup occ_grid
    occ_grid = OccupancyGrid()
    setupOccGrid(occ_grid, vision_sensor)

    # Compute block size from shape in simulation
    bounding_box = robot.get_bounding_box()
    block_size_x = int(
        round(bounding_box[1] - bounding_box[0], 3) / occ_grid.resolution)
    block_size_y = int(
        round(bounding_box[3] - bounding_box[2], 3) / occ_grid.resolution)

    submapper = GridSubmapper(occ_grid)
    submapper.process(block_size_x, block_size_y)

    planner = SubmapPlanner(occ_grid, block_size_x, block_size_y)
    cur_pos = planner.getPath(submapper.submaps, only_start=True)
コード例 #6
0
# Set numpy printing options
np.set_printoptions(threshold=100 * 100,
                    formatter={'all': lambda x: str(x) + ','})

# Get Scene
SCENE_FILE = join(dirname(abspath(__file__)),
                  'scenes/scene_nonrectilinear.ttt')

# Start Simulation
pr = PyRep()
pr.launch(SCENE_FILE, headless=True)
pr.start()

# Setup occ_grid
vision_sensor = VisionSensor('vision_sensor')
occ_grid = OccupancyGrid()
setupOccGrid(occ_grid, vision_sensor)
pr.step()

# End Simulation
pr.stop()
pr.shutdown()

# Process
img_grey = np.uint8(occ_grid.grid * 255)

contours, hierarchy = cv2.findContours(img_grey, cv2.RETR_TREE,
                                       cv2.CHAIN_APPROX_SIMPLE)

img_color = cv2.cvtColor(img_grey, cv2.COLOR_GRAY2BGR)
intermediate_step = img_color.copy()
コード例 #7
0
    def __init__(
        self,
        cols,
        rows,
        widthMM,
        heightMM,
        # the x,y and th of the current location can be passed
        currentRow=-1,
        currentCol=-1,
        currentTh=0,
        goalRow=-1,
        goalCol=-1,
        gridUpdate="",
        image=None,
        grid=None,
        gridResize=1.0,
        showIter=0,
        title="",
    ):

        self.centros = []
        self.markerToolkit = MarkerToolkit()

        self.x_localizeMM = 0
        self.y_localizeMM = 0
        self.thr_localize = 0
        self.x_last_marker_localizeMM = 0
        self.x_last_marker_robotMM = 0
        self.y_last_marker_localizeMM = 0
        self.y_last_marker_robotMM = 0
        self.thr_last_marker_localize = 0
        self.thr_last_marker_robot = 0

        self.resetMarkers()

        OccupancyGrid.__init__(
            self,
            cols=cols,
            rows=rows,
            widthMM=widthMM,
            heightMM=heightMM,
            currentRow=currentRow,
            currentCol=currentCol,
            currentTh=currentTh,
            goalRow=goalRow,
            goalCol=goalCol,
            image=image,
            grid=grid,
            gridResize=gridResize,
            showIter=showIter,
            title=title,
        )

        self.distanceToWall = [[self.infinity for col in range(self.cols)] for row in range(self.rows)]

        # Todos los bloques ocupados forman parte de una pared y por tanto
        # se les asigna distancia 0 a las paredes.
        for row in range(self.rows):
            for col in range(self.cols):
                if self.grid[row][col] > self.threshhold:
                    self.distanceToWall[row][col] = 0

        # Inicia perceptrón con los pesos calculados en la parte1. Si no se desea usar, comentar
        # esta sección de código.

        self.pesos = [
            -0.25830320437434307,
            1.160526501403915,
            -0.15551005292679421,
            1.2578377038143795,
            -0.55707372041035363,
            -2.9552247878192888,
            -1.6809527155003046,
            -2.2014578204055359,
            -13.0,
            0.0,
        ]

        self.calculadorNeuronal = PerceptronMonocapa(self.pesos, w2)