コード例 #1
0
ファイル: hric.py プロジェクト: jakobes/Ocellaris
    def update_cpp(self, dt, velocity):
        alpha = get_local(self.alpha_function)
        beta = get_local(self.blending_function)
        gradient = [
            get_local(gi) for gi in self.gradient_reconstructor.gradient
        ]
        velocity = [get_local(vi) for vi in velocity]
        g_vecs = numpy.array(gradient, dtype=float)
        v_vecs = numpy.array(velocity, dtype=float)
        assert g_vecs.shape[0] == g_vecs.shape[0] == self.simulation.ndim

        hric_funcs = {2: self.cpp_mod.hric_2D, 3: self.cpp_mod.hric_3D}
        hric_func = hric_funcs[self.simulation.ndim]
        Co_max = hric_func(self.cpp_inp, self.mesh, alpha, g_vecs, v_vecs,
                           beta, dt, self.variant)
        set_local(self.blending_function, beta, apply='insert')
        return Co_max
コード例 #2
0
def crossing_points_and_cells(simulation, field, value, preprocessed):
    """
    Find cells that contain the value iso surface. This is done by
    connecting cell midpoints across facets and seing if the level set
    crosses this line. If it does, the point where it crosses, the cell
    containing the free surface crossing point and the vector from the low
    value cell to the high value cell is stored.

    The direction vector is made into a unit vector and then scaled by the
    value difference between the two cells. The vectors are computed in
    this way so that they can be averaged (for a cell with multiple
    crossing points) to get an approximate direction of increasing value
    (typically increasing density, meaning they point into the fluid in a
    water/air simulation). This is used such that the high value and the
    low value sides of the field can be approximately determined.

    The field is assumed to be piecewice constant (DG0)
    """
    facet_data, cell_dofs, is_ghost_cell = preprocessed
    all_values = get_local(field)

    # We define acronym LCCM: line connecting cell midpoints
    #   - We restrinct ourselves to LCCMs that cross only ONE facet
    #   - We number LLCMs by the index of the crossed facet

    # Find the crossing points where the contour crosses a LCCM
    crossing_points = {}
    for fid, fdata in facet_data.items():
        # Get preprocessed data
        cid0, cid1, coords0, coords1, uvec = fdata

        # Check for level crossing
        v0 = all_values[cell_dofs[cid0]]
        v1 = all_values[cell_dofs[cid1]]
        b1, b2 = v0 < value, v1 < value
        if (b1 and b2) or not (b1 or b2):
            # LCCM not crossed by contour
            continue

        # Find the location where the contour line crosses the LCCM
        fac = (v0 - value) / (v0 - v1)
        crossing_point = tuple((1 - fac) * coords0 + fac * coords1)

        # Scaled direction vector
        direction = uvec * (v0 - v1)

        # Find the cell containing the contour line
        surf_cid = cid0 if fac <= 0.5 else cid1
        is_ghost = is_ghost_cell[cid0] if fac <= 0.5 else is_ghost_cell[cid1]

        if not is_ghost:
            # Store the point and direction towards the high value cell
            crossing_points.setdefault(surf_cid, []).append(
                (crossing_point, direction))

    return crossing_points
コード例 #3
0
def _reconstruct_gradient(
    alpha_function,
    num_neighbours,
    neighbours,
    lstsq_matrices,
    lstsq_inv_matrices,
    gradient,
):
    """
    Reconstruct the gradient, Python version of the code

    This function used to have a more Pythonic implementation
    that was most likely also faster. See old commits for that
    code. This code is here to verify the C++ version that is
    much faster than this (and the old Pythonic version)
    """
    a_cell_vec = get_local(alpha_function)
    mesh = alpha_function.function_space().mesh()

    V = alpha_function.function_space()
    assert V == gradient[0].function_space()

    cell_dofs = cell_dofmap(V)
    np_gradient = [gi.vector().get_local() for gi in gradient]

    # Reshape arrays. The C++ version needs flatt arrays
    # (limitation in Instant/Dolfin) and we have the same
    # interface for both versions of the code
    ncells = len(num_neighbours)
    ndim = mesh.topology().dim()
    num_cells_owned, num_neighbours_max = neighbours.shape
    assert ncells == num_cells_owned
    lstsq_matrices = lstsq_matrices.reshape((ncells, ndim, num_neighbours_max))
    lstsq_inv_matrices = lstsq_inv_matrices.reshape((ncells, ndim, ndim))

    for icell in range(num_cells_owned):
        cdof = cell_dofs[icell]
        Nnbs = num_neighbours[icell]
        nbs = neighbours[icell, :Nnbs]

        # Get the matrices
        AT = lstsq_matrices[icell, :, :Nnbs]
        ATAI = lstsq_inv_matrices[icell]
        a0 = a_cell_vec[cdof]
        b = [(a_cell_vec[cell_dofs[ni]] - a0) for ni in nbs]
        b = numpy.array(b, float)

        # Calculate the and store the gradient
        g = numpy.dot(ATAI, numpy.dot(AT, b))
        for d in range(ndim):
            np_gradient[d][cdof] = g[d]

    for i, np_grad in enumerate(np_gradient):
        set_local(gradient[i], np_grad, apply='insert')
コード例 #4
0
def update_level_set_view(simulation, level_set_view, crossings, cache):
    """
    Create a level set CG1 scalar function where the value is 0 at the
    given crossing point locations and approximately the distance to the
    nearest crossing point by following the edges of the mesh away from
    the crossing points and keeping track of the closest such point
    """
    dofs_x, dof_dist, cell_dofs, dof_cells = cache

    values = level_set_view.vector().get_local()
    values[:] = 1e100
    Nlocal = len(values)

    # For MPI ranks that contain the free surface we first fill out the
    # distance values starting at the free surface
    if crossings:
        # Mark distances in cells with a free surface
        for cid, cross in crossings.items():
            for crossing_point, direction in cross:
                for dof in cell_dofs[cid]:
                    if dof < Nlocal:
                        dpos = dofs_x[dof]
                        vec = dpos - crossing_point
                        dist = (vec[0]**2 + vec[1]**2 + vec[2]**2)**0.5

                        # Make the level set function a signed distance function
                        # if vec.dot(direction) < 0:
                        #     dist = -dist

                        if abs(dist) < abs(values[dof]):
                            values[dof] = dist

        # Breadth-first search to populate all of the local domain
        queue = deque()
        for cid in crossings:
            queue.extend([d for d in cell_dofs[cid] if d < Nlocal])
        bfs(queue, values, cell_dofs, dof_cells, dof_dist)

    # Update ghost cell values
    level_set_view.vector().set_local(values)
    level_set_view.vector().apply('insert')

    # Breadth first search from ghost dofs
    values2 = get_local(level_set_view)
    queue = deque(range(Nlocal, len(values2)))
    bfs(queue, values2, cell_dofs, dof_cells, dof_dist)
    level_set_view.vector().set_local(values2[:Nlocal])
    level_set_view.vector().apply('insert')
コード例 #5
0
def test_get_set_local_with_ghosts():
    comm = dolfin.MPI.comm_world
    rank = dolfin.MPI.rank(comm)

    dolfin.parameters['ghost_mode'] = 'shared_vertex'
    mesh = dolfin.UnitSquareMesh(comm, 4, 4)
    V = dolfin.FunctionSpace(mesh, 'DG', 0)
    u = dolfin.Function(V)
    dm = V.dofmap()
    im = dm.index_map()

    # Write global dof number into array for all dofs
    start, end = u.vector().local_range()
    arr = u.vector().get_local()
    arr[:] = numpy.arange(start, end)
    u.vector().set_local(arr)
    u.vector().apply('insert')

    # Get local + ghost values
    arr2 = get_local(u.vector(), V)

    # Get ghost global indices and some sizes
    global_ghost_dofs = im.local_to_global_unowned()
    Nall = im.size(im.MapSize.ALL)
    Nghost = global_ghost_dofs.size
    Nown = im.size(im.MapSize.OWNED)
    assert Nown + Nghost == Nall

    # Produce the expected answer
    dofs = numpy.arange(start, end + Nghost)
    dofs[Nown:] = global_ghost_dofs

    # Check the results
    assert dofs.shape == arr2.shape
    diff = abs(dofs - arr2).max()
    print
    print(rank, start, end, global_ghost_dofs)
    print(rank, numpy.array(arr2, dtype=numpy.intc), '\n ', dofs, diff)
    assert diff == 0
コード例 #6
0
    def run(self, use_weak_bcs=None):
        """
        Perform slope limiting of DG Lagrange functions
        """
        # No limiter needed for piecewice constant functions
        if self.degree == 0:
            return
        timer = df.Timer('Ocellaris HierarchalTaylorSlopeLimiter')

        # Update the Taylor function with the current Lagrange values
        lagrange_to_taylor(self.phi, self.taylor)
        taylor_arr = get_local(self.taylor)
        alpha_arrs = [alpha.vector().get_local() for alpha in self.alpha_funcs]

        # Get global bounds, see SlopeLimiterBase.set_initial_field()
        global_min, global_max = self.global_bounds

        # Update previous field values Taylor functions
        if self.phi_old is not None:
            lagrange_to_taylor(self.phi_old, self.taylor_old)
            taylor_arr_old = get_local(self.taylor_old)
        else:
            taylor_arr_old = taylor_arr

        # Get updated boundary conditions
        weak_vals = None
        use_weak_bcs = self.use_weak_bcs if use_weak_bcs is None else use_weak_bcs
        if use_weak_bcs:
            weak_vals = self.phi.vector().get_local()
        boundary_dof_type, boundary_dof_value = self.boundary_conditions.get_bcs(
            weak_vals)

        # Run the limiter implementation
        if self.use_cpp:
            self._run_cpp(
                taylor_arr,
                taylor_arr_old,
                alpha_arrs,
                global_min,
                global_max,
                boundary_dof_type,
                boundary_dof_value,
            )
        elif self.degree == 1 and self.ndim == 2:
            self._run_dg1(
                taylor_arr,
                taylor_arr_old,
                alpha_arrs[0],
                global_min,
                global_max,
                boundary_dof_type,
                boundary_dof_value,
            )
        elif self.degree == 2 and self.ndim == 2:
            self._run_dg2(
                taylor_arr,
                taylor_arr_old,
                alpha_arrs[0],
                alpha_arrs[1],
                global_min,
                global_max,
                boundary_dof_type,
                boundary_dof_value,
            )
        else:
            raise OcellarisError(
                'Unsupported dimension for Python version of the HierarchalTaylor limiter',
                'Only 2D is supported',
            )

        # Update the Lagrange function with the limited Taylor values
        set_local(self.taylor, taylor_arr, apply='insert')
        taylor_to_lagrange(self.taylor, self.phi)

        # Enforce boundary conditions
        if self.enforce_boundary_conditions:
            has_dbc = boundary_dof_type == self.boundary_conditions.BC_TYPE_DIRICHLET
            vals = self.phi.vector().get_local()
            vals[has_dbc] = boundary_dof_value[has_dbc]
            self.phi.vector().set_local(vals)
            self.phi.vector().apply('insert')

        # Update the secondary output arrays, alphas
        for alpha, alpha_arr in zip(self.alpha_funcs, alpha_arrs):
            alpha.vector().set_local(alpha_arr)
            alpha.vector().apply('insert')

        timer.stop()
コード例 #7
0
    def _run_dg1(
        self,
        taylor_arr,
        taylor_arr_old,
        alpha_arr,
        global_min,
        global_max,
        boundary_dof_type,
        boundary_dof_value,
    ):
        """
        Perform slope limiting of a DG1 function
        """
        inp = self.input
        lagrange_arr = get_local(self.phi)
        for icell in range(self.num_cells_owned):
            dofs = inp.cell_dofs_V[icell]
            center_value = taylor_arr[dofs[0]]
            skip_this_cell = self.limit_cell[icell] == 0

            # Find the minimum slope limiter coefficient alpha
            alpha = 1.0
            if not skip_this_cell:
                for i in range(3):
                    dof = dofs[i]
                    nn = inp.num_neighbours[dof]
                    if nn == 0:
                        skip_this_cell = True
                        break

                    # Find vertex neighbours minimum and maximum values
                    minval = maxval = center_value
                    for nb in inp.neighbours[dof, :nn]:
                        nb_center_val_dof = inp.cell_dofs_V[nb][0]
                        nb_val = taylor_arr[nb_center_val_dof]
                        minval = min(minval, nb_val)
                        maxval = max(maxval, nb_val)

                        nb_val = taylor_arr_old[nb_center_val_dof]
                        minval = min(minval, nb_val)
                        maxval = max(maxval, nb_val)

                    # Modify local bounds to incorporate the global bounds
                    minval = max(minval, global_min)
                    maxval = min(maxval, global_max)
                    center_value = max(center_value, global_min)
                    center_value = min(center_value, global_max)

                    vertex_value = lagrange_arr[dof]
                    if vertex_value > center_value:
                        alpha = min(alpha, (maxval - center_value) /
                                    (vertex_value - center_value))
                    elif vertex_value < center_value:
                        alpha = min(alpha, (minval - center_value) /
                                    (vertex_value - center_value))

            if skip_this_cell:
                alpha = 1.0

            alpha_arr[inp.cell_dofs_V0[icell]] = alpha
            taylor_arr[dofs[0]] = center_value
            taylor_arr[dofs[1]] *= alpha
            taylor_arr[dofs[2]] *= alpha
コード例 #8
0
def gather_vtk_info(mesh, funcs):
    """
    Gather the necessary information to write a legacy VTK output file
    on the root process
    """
    # The code below assumes that the first function is DG2 (u0)
    assert funcs[0].function_space().ufl_element().family() in (
        'Discontinuous Lagrange',
        'Lagrange',
    )
    assert funcs[0].function_space().ufl_element().degree() == 2

    # The code is currently 3D only
    gdim = mesh.geometry().dim()
    dofs_x = funcs[0].function_space().tabulate_dof_coordinates().reshape(
        (-1, gdim))
    assert gdim in (
        2, 3), 'VTK output currently only supported for 2D and 3D meshes'

    # Collect information about the functions
    func_names = []
    all_vals = []
    dofmaps = []
    for u in funcs:
        func_names.append(u.name())
        all_vals.append(get_local(u))
        dofmaps.append(u.function_space().dofmap())

    # Collect local data
    local_res = _collect_3D(mesh, gdim, dofs_x, func_names, all_vals, dofmaps)

    # MPI communication to get all data on root process
    comm = mesh.mpi_comm()
    all_results = comm.gather(local_res)
    if all_results is None:
        return None

    # Assemble information from all processes
    coords, connectivity, cell_types = [], [], []
    func_vals = {n: [] for n in func_names}
    for coords_i, connectivity_i, cell_types_i, func_vals_i in all_results:
        K = len(coords)
        coords.extend(coords_i)
        for conn in connectivity_i:
            connectivity.append(conn[:1] + [c + K for c in conn[1:]])
        cell_types.extend(cell_types_i)
        for n in func_names:
            func_vals[n].extend(func_vals_i[n])

    # Convert to numpy arrays
    coords = numpy.array(coords, dtype=numpy.float32)
    connectivity = numpy.array(connectivity, dtype=numpy.intc)
    cell_types = numpy.array(cell_types, dtype=numpy.intc)
    for n in func_names:
        func_vals[n] = numpy.array(func_vals[n], dtype=numpy.float32)

    # Check that the data is appropriate for output
    Nverts = len(coords)
    Ncells = len(connectivity)
    assert coords.shape == (Nverts, 3)
    assert connectivity.shape == (Ncells, 11 if gdim == 3 else 7)
    assert cell_types.shape == (Ncells, )
    for n in func_names:
        assert func_vals[n].shape == (Nverts, )

    return coords, connectivity, cell_types, func_vals
コード例 #9
0
ファイル: hric.py プロジェクト: jakobes/Ocellaris
    def update_python(self, dt, velocity):
        alpha_arr = get_local(self.alpha_function)
        beta_arr = get_local(self.blending_function)

        cell_dofs = self.cpp_inp.cell_dofmap
        facet_dofs = self.cpp_inp.facet_dofmap

        polydeg = self.alpha_function.ufl_element().degree()
        conFC = self.simulation.data['connectivity_FC']
        facet_info = self.simulation.data['facet_info']
        cell_info = self.simulation.data['cell_info']

        # Get the numpy arrays of the input functions
        gradient = self.gradient_reconstructor.gradient
        gradient_arrs = [get_local(gi) for gi in gradient]
        velocity_arrs = [get_local(vi) for vi in velocity]

        EPS = 1e-6
        Co_max = 0
        for facet in dolfin.facets(self.mesh, 'regular'):
            fidx = facet.index()
            fdof = facet_dofs[fidx]
            finfo = facet_info[fidx]

            # Find the local cells (the two cells sharing this face)
            connected_cells = conFC(fidx)

            if len(connected_cells) != 2:
                # This should be an exterior facet (on ds)
                assert facet.exterior()
                beta_arr[fdof] = 0.0
                continue

            # Indices of the two local cells
            ic0, ic1 = connected_cells

            # Velocity at the facet
            ump = [vi[fdof] for vi in velocity_arrs]

            # Midpoint of local cells
            cell0_mp = cell_info[ic0].midpoint
            cell1_mp = cell_info[ic1].midpoint
            mp_dist = cell1_mp - cell0_mp

            # Normal pointing out of cell 0
            normal = finfo.normal

            # Find indices of downstream ("D") cell and central ("C") cell
            uf = numpy.dot(normal, ump)
            if uf > 0:
                iaC = ic0
                iaD = ic1
                vec_to_downstream = mp_dist
                # nminC, nmaxC = nmin0, nmax0
            else:
                iaC = ic1
                iaD = ic0
                vec_to_downstream = -mp_dist
                # nminC, nmaxC = nmin1, nmax1

            # Find alpha in D and C cells
            if polydeg == 0:
                aD = alpha_arr[cell_dofs[iaD]]
                aC = alpha_arr[cell_dofs[iaC]]
            elif polydeg == 1:
                aD, aC = numpy.zeros(1), numpy.zeros(1)
                self.alpha_function.eval(aD, cell_info[iaD].midpoint)
                self.alpha_function.eval(aC, cell_info[iaC].midpoint)
                aD, aC = aD[0], aC[0]

            if abs(aC - aD) < EPS:
                # No change in this area, use upstream value
                beta_arr[fdof] = 0.0
                continue

            # Gradient of alpha in the central cell
            gC = [gi[cell_dofs[iaC]] for gi in gradient_arrs]
            len_gC2 = numpy.dot(gC, gC)

            if len_gC2 == 0:
                # No change in this area, use upstream value
                beta_arr[fdof] = 0.0
                continue

            # Upstream value
            # See Ubbink's PhD (1997) equations 4.21 and 4.22
            aU = aD - 2 * numpy.dot(gC, vec_to_downstream)
            aU = min(max(aU, 0.0), 1.0)

            # Calculate the facet Courant number
            Co = abs(uf) * dt * finfo.area / cell_info[iaC].volume
            Co_max = max(Co_max, Co)

            if abs(aU - aD) < EPS:
                # No change in this area, use upstream value
                beta_arr[fdof] = 0.0
                continue

            # Angle between face normal and surface normal
            len_normal2 = numpy.dot(normal, normal)
            cos_theta = numpy.dot(normal, gC) / (len_normal2 * len_gC2)**0.5

            # Introduce normalized variables
            tilde_aC = (aC - aU) / (aD - aU)

            if tilde_aC <= 0 or tilde_aC >= 1:
                # Only upwind is stable
                beta_arr[fdof] = 0.0
                continue

            if self.variant == 'HRIC':
                # Compressive scheme
                tilde_aF = 2 * tilde_aC if 0 <= tilde_aC <= 0.5 else 1

                # Correct tilde_aF to avoid aligning with interfaces
                t = abs(cos_theta)**0.5
                tilde_aF_star = tilde_aF * t + tilde_aC * (1 - t)

                # Correct tilde_af_star for high Courant numbers
                if Co < 0.4:
                    tilde_aF_final = tilde_aF_star
                elif Co < 0.75:
                    tilde_aF_final = tilde_aC + (tilde_aF_star - tilde_aC) * (
                        0.75 - Co) / (0.75 - 0.4)
                else:
                    tilde_aF_final = tilde_aC

            elif self.variant == 'MHRIC':
                # Compressive scheme
                tilde_aF = 2 * tilde_aC if 0 <= tilde_aC <= 0.5 else 1

                # Less compressive scheme
                tilde_aF_ultimate_quickest = min((6 * tilde_aC + 3) / 8,
                                                 tilde_aF)

                # Correct tilde_aF to avoid aligning with interfaces
                t = abs(cos_theta)**0.5
                tilde_aF_final = tilde_aF * t + tilde_aF_ultimate_quickest * (
                    1 - t)

            elif self.variant == 'RHRIC':
                # Compressive scheme
                tilde_aF_hyperc = min(tilde_aC / Co, 1)

                # Less compressive scheme
                tilde_aF_hric = min(tilde_aC * Co + 2 * tilde_aC * (1 - Co),
                                    tilde_aF_hyperc)

                # Correct tilde_aF to avoid aligning with interfaces
                t = cos_theta**4
                tilde_aF_final = tilde_aF_hyperc * t + tilde_aF_hric * (1 - t)

            # Avoid tilde_aF being slightly lower that tilde_aC due to
            # floating point errors, it must be greater or equal
            if tilde_aC - EPS < tilde_aF_final < tilde_aC:
                tilde_aF_final = tilde_aC

            # Calculate the downstream blending factor (0=upstream, 1=downstream)
            tilde_beta = (tilde_aF_final - tilde_aC) / (1 - tilde_aC)

            if not (0.0 <= tilde_beta <= 1.0):
                print('ERROR, tilde_beta %r is out of range [0, 1]' %
                      tilde_beta)
                print(' face normal: %r' % normal)
                print(' surface gradient: %r' % gC)
                print(' cos(theta): %r' % cos_theta)
                print(' sqrt(abs(cos(theta))) %r' % t)
                print(' tilde_aF_final %r' % tilde_aF_final)
                print(' tilde_aC %r' % tilde_aC)
                print(' aU %r, aC %r, aD %r' % (aU, aC, aD))

            assert 0.0 <= tilde_beta <= 1.0
            beta_arr[fdof] = tilde_beta

        set_local(self.blending_function, beta_arr, apply='insert')
        return Co_max