コード例 #1
0
ファイル: test_bcs.py プロジェクト: jakobes/Ocellaris
def test_dirichlet_bcs_scalar_constant_value(method):
    "Test inhomogenous Dirichlet BCs using a Poisson solver"
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)
    sim.input.set_value('boundary_conditions', [{}])
    sim.input.set_value('boundary_conditions/0/name', 'all walls')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value('boundary_conditions/0/inside_code', 'on_boundary')

    if method == 'const':
        sim.input.set_value('boundary_conditions/0/phi/type', 'ConstantValue')
        sim.input.set_value('boundary_conditions/0/phi/value', 1.0)
    elif method == 'py_eval':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedValue')
        sim.input.set_value('boundary_conditions/0/phi/code', '1.0')
    elif method == 'py_exec':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedValue')
        sim.input.set_value('boundary_conditions/0/phi/code', 'value[0] = 1.0')
    elif method == 'cpp':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CppCodedValue')
        sim.input.set_value('boundary_conditions/0/phi/cpp_code', '1.0')

    setup_simulation(sim)
    run_simulation(sim)

    p = sim.data['phi'].vector().get_local()
    assert numpy.linalg.norm(p - 1.0) < 1e-8
コード例 #2
0
def test_get_dof_region_marks():
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)
    setup_simulation(sim)
    Vp = sim.data['Vp']
    dofs_x = Vp.tabulate_dof_coordinates().reshape((-1, 2))

    drm = get_dof_region_marks(sim, Vp)
    num_in_region = [0, 0]
    ok = True
    for dof, marks in drm.items():
        x, y = dofs_x[dof]
        if not (x == 0 or x == 1 or y == 0 or y == 1):
            mpi_print('Got unexpected dof coords', x, y)
            ok = False
        if (0 in marks) != (x == 1 or y == 0 or y == 1):
            mpi_print('Got unexpected dof coords in region 0', x, y)
            ok = False
        if (1 in marks) != (x == 0):
            mpi_print('Got unexpected dof coords in region 0', x, y)
            ok = False
        for mark in marks:
            num_in_region[mark] += 1

    assert all_ok(ok)
    assert mpi_int_sum(num_in_region[0]) == 30 + 29 * 2
    assert mpi_int_sum(num_in_region[1]) == 30
コード例 #3
0
def mk_limiter(degree, dim, use_cpp, comm_self=False):
    dolfin.parameters['ghost_mode'] = 'shared_vertex'

    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)

    if dim == 2:
        sim.input.set_value('mesh/type', 'Rectangle')
        sim.input.set_value('mesh/Nx', 10)
        sim.input.set_value('mesh/Ny', 10)
        cpp = 'A + A*sin(B*pi*x[0])*sin(B*pi*x[1])'
    else:
        sim.input.set_value('mesh/type', 'Box')
        sim.input.set_value('mesh/Nx', 5)
        sim.input.set_value('mesh/Ny', 5)
        sim.input.set_value('mesh/Nz', 5)
        cpp = 'A + A*sin(B*pi*x[0])*sin(B*pi*x[1])*sin(B*pi*x[2])'

    # Create simulation with mesh and the phi function
    sim.input.set_value('mesh/mpi_comm', 'SELF' if comm_self else 'WORLD')
    sim.input.set_value('solver/polynomial_degree', degree)
    sim.input.set_value('output/stdout_enabled', False)
    setup_simulation(sim)
    phi = sim.data['phi']
    V = phi.function_space()

    # Create a phi field with some jumps
    e = dolfin.Expression(cpp, element=V.ufl_element(), A=0.5, B=2.0)
    phi.interpolate(e)
    arr = phi.vector().get_local()
    arr[arr > 0.8] = 2 * 0.8 - arr[arr > 0.8]
    arr[arr < 0.2] = 0.5
    phi.vector().set_local(arr)
    phi.vector().apply('insert')

    # Create slope limiter
    sim.input.set_value('slope_limiter/phi/method', 'HierarchicalTaylor')
    sim.input.set_value('slope_limiter/phi/use_cpp', use_cpp)
    sim.input.set_value('slope_limiter/phi/skip_boundaries', [])
    lim = SlopeLimiter(sim, 'phi', phi)

    if True:
        from matplotlib import pyplot

        pyplot.figure()
        patches = dolfin.plot(phi)
        pyplot.colorbar(patches)
        pyplot.savefig('ht_lim_phi.png')

    return phi, lim
コード例 #4
0
def test_isoline_circle(degree):
    sim = Simulation()
    sim.input.read_yaml(yaml_string=ISO_INPUT)
    sim.input.set_value('multiphase_solver/polynomial_degree_colour', degree)
    sim.input.set_value('mesh/Nx', 10)
    sim.input.set_value('mesh/Ny', 10)
    sim.input.set_value(
        'initial_conditions/cp/cpp_code', '1.1*pow(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2), 0.5)'
    )
    setup_simulation(sim)

    sim.data['c'].assign(sim.data['cp'])
    probe = sim.probes['free_surface']
    lines = probe.run(force_active=True)

    if False:
        from matplotlib import pyplot

        c = dolfin.plot(sim.data['c'])
        pyplot.colorbar(c)
        for x, y in lines:
            pyplot.plot(x, y)
        pyplot.savefig('test_isoline_circle_%d.png' % degree)
        pyplot.close()

    print(probe.name, probe.field_name, probe.value)
    print(len(lines))
    for x, y in lines:
        # Check that the radius is constant
        r = ((x - 0.5) ** 2 + (y - 0.5) ** 2) ** 0.5
        print('x', x)
        print('y', y)
        print('dr', r - 0.5 / 1.1)
        assert all(abs(r - 0.5 / 1.1) < 5e-3)

        # Check that the line is clockwise or counter clockwise
        # for all segments, no going back and forth
        theta = numpy.arctan2(y - 0.5, x - 0.5) * 180 / numpy.pi
        theta[theta < 0] += 360
        tdt = numpy.diff(theta)
        tdt2 = tdt[abs(tdt) < 340]
        print('dt', tdt)
        assert all(tdt2 > 0) or all(tdt2 < 0)

    if sim.ncpu == 1:
        # The iso surface code is not written for full parallel support
        assert len(lines) == 1
        assert x[0] == x[-1] and y[0] == y[-1], "The loop should be closed"
コード例 #5
0
ファイル: test_user_code.py プロジェクト: jakobes/Ocellaris
def test_user_constants():
    sim = Simulation()
    sim.input.read_yaml(yaml_string=INPUT_USER_CONSTANTS)
    success = setup_simulation(sim)
    assert success

    assert sim.input.get_value('ref') == 42.0
コード例 #6
0
def test_plot_io_3D(iotype, tmpdir_factory):
    dir_name = mpi_tmpdir(tmpdir_factory, 'test_plot_io_3D')
    prefix = os.path.join(dir_name, 'ocellaris')
    N = 4

    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT_VELPRES)
    sim.input.set_value('output/prefix', prefix)
    sim.input.set_value('user_code/constants/N', N)
    setup_simulation(sim)
    sim.io.setup()  # Normally called in sim._at_start_of_simulation()

    for d in range(3):
        sim.data['u%d' % d].assign(sim.data['up%d' % d])

    ncell = N**3 * 6
    npoint = ncell * 10

    if iotype == 'vtk':
        file_name = sim.io.lvtk.write()
        assert file_name.startswith(prefix)
        assert file_name.endswith('.vtk')
        assert os.path.isfile(file_name)

        with open(file_name, 'rt') as f:
            for line in f:
                if line.startswith('POINTS'):
                    pline = line
                elif line.startswith('CELLS'):
                    cline = line
                elif line.startswith('CELL_TYPES'):
                    tline = line
                elif line.startswith('POINT_DATA'):
                    dline = line
        assert pline.strip() == 'POINTS %d float' % npoint
        assert cline.strip() == 'CELLS %d %d' % (ncell, ncell * 11)
        assert tline.strip() == 'CELL_TYPES %d' % ncell
        assert dline.strip() == 'POINT_DATA %d' % (ncell * 10)

    elif iotype == 'xdmf':
        file_name = sim.io.xdmf.write()
        assert file_name.startswith(prefix)
        assert file_name.endswith('.xdmf')
        assert os.path.isfile(file_name)
コード例 #7
0
ファイル: test_user_code.py プロジェクト: jakobes/Ocellaris
def test_use_code():
    dummy_mod = '__DUMMY__'
    assert dummy_mod not in sys.modules

    sim = Simulation()
    sim.input.read_yaml(yaml_string=INPUT_USER_CODE)
    success = setup_simulation(sim)
    assert success

    assert dummy_mod in sys.modules
    sys.modules.pop(dummy_mod)
コード例 #8
0
def test_mark_cell_layers():
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)
    setup_simulation(sim)
    mesh = sim.data['mesh']
    Vp = sim.data['Vp']

    # No named == all
    cells = mark_cell_layers(sim, Vp)
    for cid in cells:
        cell = dolfin.Cell(mesh, cid)
        mp = cell.midpoint()[:]
        assert mp[0] < 0.1 or mp[0] > 0.9 or mp[1] < 0.1 or mp[1] > 0.9
    assert mpi_int_sum(len(cells)) == 20 * 2 + 16 * 2

    # Test all
    cells = mark_cell_layers(sim, Vp, named_boundaries=['all'])
    for cid in cells:
        cell = dolfin.Cell(mesh, cid)
        mp = cell.midpoint()[:]
        assert mp[0] < 0.1 or mp[0] > 0.9 or mp[1] < 0.1 or mp[1] > 0.9
    assert mpi_int_sum(len(cells)) * 2 + 16 * 2

    # Test only left side
    cells = mark_cell_layers(sim, Vp, named_boundaries=['left'])
    for cid in cells:
        cell = dolfin.Cell(mesh, cid)
        mp = cell.midpoint()[:]
        assert mp[0] < 0.1
    assert mpi_int_sum(len(cells)) == 20

    cells = mark_cell_layers(sim, Vp, named_boundaries=['not left'])
    for cid in cells:
        cell = dolfin.Cell(mesh, cid)
        mp = cell.midpoint()[:]
        assert mp[0] > 0.9 or mp[1] < 0.1 or mp[1] > 0.9
    assert mpi_int_sum(len(cells)) == 20 * 1 + 18 * 2

    cells = mark_cell_layers(sim, Vp, named_boundaries=['left', 'not left'])
    assert mpi_int_sum(len(cells)) == 20 * 2 + 16 * 2
コード例 #9
0
ファイル: test_bcs.py プロジェクト: jakobes/Ocellaris
def test_dirichlet_bcs_scalar_mms(method):
    "Test inhomogenous coded Dirichlet BCs using a Poisson solver"
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)
    sim.input.set_value('boundary_conditions', [{}])
    sim.input.set_value('boundary_conditions/0/name', 'all walls')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value('boundary_conditions/0/inside_code', 'on_boundary')

    # Get analytical expressions
    cphi, _, _, cf = mms_case()
    sim.input.set_value('solver/source', cf)

    # Setup the boundary conditions to test
    if method == 'py_eval':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedValue')
        sim.input.set_value('boundary_conditions/0/phi/code', cphi)
    elif method == 'py_exec':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedValue')
        sim.input.set_value('boundary_conditions/0/phi/code', 'value[0] = ' + cphi)
    elif method == 'cpp':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CppCodedValue')
        sim.input.set_value('boundary_conditions/0/phi/cpp_code', cphi)

    # Run Ocellaris
    setup_simulation(sim)
    run_simulation(sim)

    # The numeric (phih) and analytic (phia) solution functions
    Vphi = sim.data['Vphi']
    phi = dolfin.Expression(cphi, degree=5)
    phih = sim.data['phi']
    phia = dolfin.interpolate(phi, Vphi)

    # Compute relative error and check that it is reasonable
    phidiff = dolfin.errornorm(phi, phih)
    analytical = dolfin.norm(phia)
    relative_error = phidiff / analytical
    print('RELATIVE ERROR IS %.3f' % relative_error)
    assert relative_error < 0.074
コード例 #10
0
def test_restart_file_io(tmpdir_factory):
    dir_name = mpi_tmpdir(tmpdir_factory, 'test_restart_file_io')
    prefix = os.path.join(dir_name, 'ocellaris')

    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT_PHI)
    sim.input.set_value('output/prefix', prefix)
    sim.input.set_value('time/tstart', 42.0)
    sim.input.set_value('time/dt', 1.0)
    setup_simulation(sim)

    # Fill in the phi function
    phi = sim.data['phi']
    phi_arr = phi.vector().get_local()
    phi_arr[:] = numpy.random.rand(*phi_arr.shape)
    phi.vector().set_local(phi_arr)
    phi.vector().apply('insert')

    # Save restart file
    file_name = sim.io.write_restart_file()
    assert file_name.startswith(prefix)

    # Load input from restart file
    sim2 = Simulation()
    sim2.io.load_restart_file_input(file_name)
    assert sim2.input.get_value('time/tstart') == 42.0
    assert str(sim.input) == str(sim2.input)

    # Load phi from restart file
    setup_simulation(sim2)
    sim2.io.load_restart_file_results(file_name)
    phi2 = sim2.data['phi']
    phi2_arr = phi2.vector().get_local()

    # FIXME: make tests work in parallel
    if sim2.data['mesh'].mpi_comm().size == 1:
        assert all(phi_arr == phi2_arr)
        assert sim.data['mesh'].hash() == sim2.data['mesh'].hash()
コード例 #11
0
def test_isoline_horizontal(degree):
    sim = Simulation()
    sim.input.read_yaml(yaml_string=ISO_INPUT)
    sim.input.set_value('multiphase_solver/polynomial_degree_colour', degree)
    setup_simulation(sim)
    probe = sim.probes['free_surface']

    # Initial value with sharp interface at x[1] == 0.5
    Vc = sim.data['Vc']
    c = sim.data['c']
    dm = Vc.dofmap()
    arr = c.vector().get_local()
    for cell in dolfin.cells(sim.data['mesh']):
        cell_value = 1 if cell.midpoint().y() < 0.5 else 0
        for dof in dm.cell_dofs(cell.index()):
            arr[dof] = cell_value
    c.vector().set_local(arr)
    c.vector().apply('insert')

    lines = probe.run(force_active=True)
    print('\nDegree:', degree, 'Vcdim:', Vc.dim())
    print(probe.name, probe.field_name, probe.value)
    print(len(lines))

    if sim.ncpu > 1:
        raise pytest.skip()

    for x, y in lines:
        print('x', x, '\ny', y)
        assert all(abs(y - 0.5) < 1e-12)

        # Results should be in sorted order
        xdx = numpy.diff(x)
        assert all(xdx > 0) or all(xdx < 0)

    assert len(lines) == 1
コード例 #12
0
ファイル: test_user_code.py プロジェクト: jakobes/Ocellaris
def test_import_module():
    # A randomly selected script that does nothing at import time
    dummy_mod = 'plot_reports'
    assert dummy_mod not in sys.modules

    # Account for current working directory
    inp = INPUT_MODULE_IMPORT % os.path.join(TEST_DIR, '..')

    sim = Simulation()
    sim.input.read_yaml(yaml_string=inp)
    success = setup_simulation(sim)
    assert success

    assert dummy_mod in sys.modules
    sys.modules.pop(dummy_mod)
コード例 #13
0
ファイル: test_bcs.py プロジェクト: jakobes/Ocellaris
def test_neumann_bcs_scalar_mms(method):
    "Test pure Neumann BCs using a Poisson solver"
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)
    sim.input.set_value('mesh/Nx', 20)
    sim.input.set_value('mesh/Ny', 20)
    sim.input.set_value('boundary_conditions', [{}, {}])
    sim.input.set_value('boundary_conditions/0/name', 'vertical walls')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/0/inside_code', 'on_boundary and (x[0] < 1e-6 or x[0] > 1 - 1e-6)'
    )
    sim.input.set_value('boundary_conditions/1/name', 'horizontal walls')
    sim.input.set_value('boundary_conditions/1/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/1/inside_code', 'on_boundary and (x[1] < 1e-6 or x[1] > 1 - 1e-6)'
    )

    # Get analytical expressions
    cphi, cphix, cphiy, cf = mms_case()
    sim.input.set_value('solver/source', cf)

    if method.startswith('py'):
        cphix = '(-1.0 if x[0] < 0.5 else 1.0) * ' + cphix
        cphiy = '(-1.0 if x[1] < 0.5 else 1.0) * ' + cphiy
    else:
        cphix = '(x[0] < 0.5 ? -1.0 : 1.0) * ' + cphix
        cphiy = '(x[1] < 0.5 ? -1.0 : 1.0) * ' + cphiy

    # Setup the boundary conditions to test
    if method == 'py_eval':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedGradient')
        sim.input.set_value('boundary_conditions/0/phi/code', cphix)
        sim.input.set_value('boundary_conditions/1/phi/type', 'CodedGradient')
        sim.input.set_value('boundary_conditions/1/phi/code', cphiy)
    elif method == 'py_exec':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedGradient')
        sim.input.set_value('boundary_conditions/0/phi/code', 'value[0] = ' + cphix)
        sim.input.set_value('boundary_conditions/1/phi/type', 'CodedGradient')
        sim.input.set_value('boundary_conditions/1/phi/code', 'value[0] = ' + cphiy)
    elif method == 'cpp':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CppCodedGradient')
        sim.input.set_value('boundary_conditions/0/phi/cpp_code', cphix)
        sim.input.set_value('boundary_conditions/1/phi/type', 'CppCodedGradient')
        sim.input.set_value('boundary_conditions/1/phi/cpp_code', cphiy)

    # Run Ocellaris
    setup_simulation(sim)
    run_simulation(sim)

    # The numeric (phih) and analytic (phia) solution functions
    Vphi = sim.data['Vphi']
    phi = dolfin.Expression(cphi, degree=5)
    phih = sim.data['phi']
    phia = dolfin.interpolate(phi, Vphi)

    # Correct the constant offset due to how the null space is handled
    correct_constant_offset(sim, phih, phia)

    # Compute relative error and check that it is reasonable
    phidiff = dolfin.errornorm(phi, phih)
    analytical = dolfin.norm(phia)
    relative_error = phidiff / analytical
    print('RELATIVE ERROR IS %.3f' % relative_error)
    assert relative_error < 0.055
コード例 #14
0
ファイル: test_bcs.py プロジェクト: jakobes/Ocellaris
def test_robin_bcs_scalar_mms(bcs, b):
    """
    Test Robin BCs using a Poisson solver to solve

      -∇⋅∇φ = f

    where φ = 1 + x and hence f = 0. We use Neumann
    BCs n⋅∇φ = 0 on the horizontal walls and Robin
    BCs on the vertical walls
    """
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)

    # Create boundary regions
    sim.input.set_value('boundary_conditions', [{}, {}, {}])
    sim.input.set_value('boundary_conditions/0/name', 'vertical wall x=0')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/0/inside_code', 'on_boundary and (x[0] < 1e-6 or x[0] > 1 - 1e-6)'
    )
    sim.input.set_value('boundary_conditions/1/name', 'vertical walls x=1')
    sim.input.set_value('boundary_conditions/1/selector', 'code')
    sim.input.set_value('boundary_conditions/1/inside_code', 'on_boundary and x[0] > 1 - 1e-6')
    sim.input.set_value('boundary_conditions/2/name', 'horizontal walls')
    sim.input.set_value('boundary_conditions/2/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/2/inside_code', 'on_boundary and (x[1] < 1e-6 or x[1] > 1 - 1e-6)'
    )

    # Setup the boundary conditions to test
    if bcs == 'robin':
        sim.input.set_value('boundary_conditions/0/phi/type', 'ConstantRobin')
        sim.input.set_value('boundary_conditions/0/phi/blend', b)
        sim.input.set_value('boundary_conditions/0/phi/dval', 1.0)
        sim.input.set_value('boundary_conditions/0/phi/nval', -1.0)
        sim.input.set_value('boundary_conditions/1/phi/type', 'ConstantRobin')
        sim.input.set_value('boundary_conditions/1/phi/blend', b)
        sim.input.set_value('boundary_conditions/1/phi/dval', 2.0)
        sim.input.set_value('boundary_conditions/1/phi/nval', 1.0)
        sim.input.set_value('boundary_conditions/2/phi/type', 'ConstantGradient')
        sim.input.set_value('boundary_conditions/2/phi/value', 0.0)
    elif bcs == 'neumann':
        sim.input.set_value('boundary_conditions/0/phi/type', 'ConstantGradient')
        sim.input.set_value('boundary_conditions/0/phi/value', -1.0)
        sim.input.set_value('boundary_conditions/1/phi/type', 'ConstantGradient')
        sim.input.set_value('boundary_conditions/1/phi/value', 1.0)

    # RHS
    sim.input.set_value('solver/source', '2*pi*pi*(pow(sin(x[0]*pi), 2) - pow(cos(x[0]*pi), 2))')

    # Run Ocellaris
    setup_simulation(sim)
    run_simulation(sim)

    # The numeric (phih) and analytic (phia) solution functions
    cphi = '1.0 + x[0] + pow(sin(x[0]*pi), 2)'
    Vphi = sim.data['Vphi']
    phi = dolfin.Expression(cphi, degree=5)
    phih = sim.data['phi']
    phia = dolfin.interpolate(phi, Vphi)

    # Correct the constant offset due to how the null space is handledFalse
    if bcs == 'neumann':
        correct_constant_offset(sim, phih, phia)

    # Plot to file for debugging
    # debug_phi_plot(phia, phih, 'test_robin_bcs_scalar_mms_%s.png' % bcs)

    # Compute relative error and check that it is reasonable
    phidiff = dolfin.errornorm(phi, phih)
    analytical = dolfin.norm(phia)
    relative_error = phidiff / analytical
    print('RELATIVE ERROR IS %.3f' % relative_error)
    assert relative_error < 0.015  # Expect 0.0139 with Robin
コード例 #15
0
ファイル: test_bcs.py プロジェクト: jakobes/Ocellaris
def test_slip_length_robin_bcs_scalar_mms(slip_length, method):
    """
    Test slip length Robin BCs using a Poisson solver to solve

      -∇⋅∇φ = f

    where φ = (-6x² + 6x + 6𝛿)/(6𝛿  - 1) and hence f = 12/(6𝛿  - 1). 

    We use Neumann BCs n⋅∇φ = 0 on the horizontal walls and Navier's
    slip length boundary condition on the vertical walls. The selected
    analytical solution is such that for any slip length 𝛿 the average
    value of φ is 1.0

    This mimics a flow profile going vertically in a 1.0 wide channel
    """
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)

    # Create boundary regions
    sim.input.set_value('boundary_conditions', [{}, {}])
    sim.input.set_value('boundary_conditions/0/name', 'vertical walls')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/0/inside_code', 'on_boundary and (x[0] < 1e-6 or x[0] > 1 - 1e-6)'
    )
    sim.input.set_value('boundary_conditions/1/name', 'horizontal walls')
    sim.input.set_value('boundary_conditions/1/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/1/inside_code', 'on_boundary and (x[1] < 1e-6 or x[1] > 1 - 1e-6)'
    )

    # Vertical wall BCs
    if method == 'Constant':
        sim.input.set_value('boundary_conditions/0/phi/type', 'SlipLength')
        sim.input.set_value('boundary_conditions/0/phi/slip_length', slip_length)
    elif method == 'C++':
        sim.input.set_value('boundary_conditions/0/phi/type', 'SlipLength')
        sim.input.set_value('boundary_conditions/0/phi/slip_length', repr(slip_length))
    else:
        sim.input.set_value('boundary_conditions/0/phi/type', 'InterfaceSlipLength')
        sim.input.set_value('boundary_conditions/0/phi/slip_length', slip_length)
        sim.input.set_value('boundary_conditions/0/phi/slip_factor_function', 'fs_zone/phi')

        sim.input.set_value('fields', [{}])
        sim.input.set_value('fields/0/name', 'fs_zone')
        sim.input.set_value('fields/0/type', 'FreeSurfaceZone')
        sim.input.set_value('fields/0/radius', 0.5)

        # Create dummy scalar field
        sim.input.set_value('multiphase_solver/type', 'BlendedAlgebraicVOF')
        sim.input.set_value('multiphase_solver/function_space_colour', 'DG')
        sim.input.set_value('multiphase_solver/polynomial_degree_colour', 0)
        sim.input.set_value('initial_conditions/cp/cpp_code', 'x[1] < 0.5 ? 1.0 : 0.0')

        sim.input.set_value('physical_properties/rho0', 1.0)
        sim.input.set_value('physical_properties/rho1', 1.0)
        sim.input.set_value('physical_properties/nu0', 1.0)
        sim.input.set_value('physical_properties/nu1', 1.0)

        sim.input.set_value('multiphase_solver/project_uconv_dgt0', False)
        sim.data['u_conv'] = dolfin.as_vector([0, 0])
        sim.data['dt'] = dolfin.Constant(1.0)

    # Horizontal wall BCs
    sim.input.set_value('boundary_conditions/1/phi/type', 'ConstantGradient')
    sim.input.set_value('boundary_conditions/1/phi/value', 0.0)

    # RHS
    sim.input.set_value('solver/source', '12/(6*𝛿  - 1.0)'.replace('𝛿', repr(slip_length)))

    # Run Ocellaris
    setup_simulation(sim)
    run_simulation(sim)

    # The numeric (phih) and analytic (phia) solution functions
    cphi = '(-6*x[0]*x[0] + 6*x[0] + 6*𝛿)/(6*𝛿  - 1.0)'.replace('𝛿', repr(slip_length))
    Vphi = sim.data['Vphi']
    phi = dolfin.Expression(cphi, degree=5)
    phih = sim.data['phi']
    phia = dolfin.interpolate(phi, Vphi)

    # Plot to file for debugging
    # debug_phi_plot(phi, phia, phih, 'test_slip_length_bcs_scalar_mms_%g.png' % slip_length)

    # Compute relative error and check that it is reasonable
    phidiff = dolfin.errornorm(phi, phih)
    analytical = dolfin.norm(phia)
    relative_error = phidiff / analytical
    print('RELATIVE ERROR IS %.4f for 𝛿=%r' % (relative_error, slip_length))

    if method == 'Interface' and False:
        from matplotlib import pyplot

        fig = pyplot.figure(figsize=(8, 15))
        fig.add_subplot(311)
        c = dolfin.plot(sim.data['c'])
        pyplot.colorbar(c)
        fig.add_subplot(312)
        c = dolfin.plot(sim.data['ls_c_0_5'])
        pyplot.colorbar(c)
        fig.add_subplot(313)
        c = dolfin.plot(sim.fields['fs_zone'].get_variable('phi'))
        pyplot.colorbar(c)
        fig.tight_layout()
        fig.savefig('AAAAAAAAAAAaaaa.png')

    assert relative_error < 0.0099  # Expect 0.0097 for 𝛿=0.001
コード例 #16
0
ファイル: __main__.py プロジェクト: jakobes/Ocellaris
def main(inputfile, input_override):
    """
    Run Ocellaris
    """
    if os.environ.get('OCELLARIS_SUPER_DEBUG', False):
        print('FOUND OCELLARIS_SUPER_DEBUG in environment')
        from ocellaris.utils.debug import enable_super_debug

        enable_super_debug()

    sim = Simulation()

    # Read input
    if sim.io.is_restart_file(inputfile):
        sim.io.load_restart_file_input(inputfile)
    else:
        sim.input.read_yaml(inputfile)

    # Alter input by values given on the command line
    override_input_variables(sim, input_override)

    # Setup logging before we start printing anything
    sim.log.setup()

    # Print banner with Ocellaris version number
    version = get_detailed_version()
    location = os.path.split(os.path.abspath(__file__))[0]
    sim.log.info('=' * 80)
    sim.log.info('                  Ocellaris   %s' % version)
    sim.log.info('=' * 80)
    sim.log.info('Installed at:')
    sim.log.info('    %s' % location)
    sim.log.info('    host: %s' % platform.node())
    sim.log.info()

    # Print some version information
    sim.log.info('Running on Python %s' % sys.version)
    sim.log.info('    Using dolfin %s' % dolfin.__version__)
    sim.log.info('    Using mpi4py %s' % mpi4py.__version__)
    sim.log.info('    Using h5py   %s' % h5py.__version__)
    sim.log.info('    Using meshio %s' % meshio.__version__)
    sim.log.info('    Using PyYAML %s' % yaml.__version__)
    sim.log.info('    Using petsc4py %s' % petsc4py_version)
    sim.log.info('    Using PETSc %d.%d.%d\n' % PETSc.Sys.getVersion())

    # Setup the Ocellaris simulation
    ok = setup_simulation(sim, setup_logging=False, catch_exceptions=True)
    if not ok:
        sim.log.error('Setup did not suceed, exiting')
        sys.exit(1)

    if sim.restarted:
        # Load previous results
        sim.io.load_restart_file_results(inputfile)

    # Run the Ocellaris simulation time loop
    run_simulation(sim, catch_exceptions=True)

    sim.log.info('=' * 80)
    if sim.success:
        sim.log.info('Ocellaris finished successfully')
    else:
        sim.log.info('Ocellaris finished with errors')
コード例 #17
0
def run_and_calculate_error(N, dt, tmax, polydeg_u, polydeg_p, modifier=None):
    """
    Run Ocellaris and return L2 & H1 errors in the last time step
    """
    say(N, dt, tmax, polydeg_u, polydeg_p)

    # Setup and run simulation
    sim = Simulation()
    sim.input.read_yaml('kovasznay.inp')

    sim.input.set_value('mesh/Nx', N)
    sim.input.set_value('mesh/Ny', N)
    sim.input.set_value('time/dt', dt)
    sim.input.set_value('time/tmax', tmax)
    sim.input.set_value('solver/polynomial_degree_velocity', polydeg_u)
    sim.input.set_value('solver/polynomial_degree_pressure', polydeg_p)
    sim.input.set_value('output/stdout_enabled', False)

    if modifier:
        modifier(sim)  # Running regression tests, modify some input params

    say('Running ...')
    try:
        t1 = time.time()
        setup_simulation(sim)
        run_simulation(sim)
        duration = time.time() - t1
    except KeyboardInterrupt:
        raise
    except BaseException as e:
        raise
        import traceback

        traceback.print_exc()
        return [1e10] * 6 + [1, dt, time.time() - t1]
    say('DONE')
    tmax_warning = ' <------ NON CONVERGENCE!!' if sim.time > tmax - dt / 2 else ''

    # Interpolate the analytical solution to the same function space
    Vu = sim.data['Vu']
    Vp = sim.data['Vp']
    lambda_ = sim.input.get_value('user_code/constants/LAMBDA',
                                  required_type='float')
    u0e = dolfin.Expression(
        sim.input.get_value('boundary_conditions/0/u/cpp_code/0'),
        LAMBDA=lambda_,
        degree=polydeg_u)
    u1e = dolfin.Expression(
        sim.input.get_value('boundary_conditions/0/u/cpp_code/1'),
        LAMBDA=lambda_,
        degree=polydeg_u)
    pe = dolfin.Expression(
        '-0.5*exp(LAMBDA*2*x[0]) + 1/(4*LAMBDA)*(exp(2*LAMBDA) - 1.0)',
        LAMBDA=lambda_,
        degree=polydeg_p,
    )
    u0a = dolfin.project(u0e, Vu)
    u1a = dolfin.project(u1e, Vu)
    pa = dolfin.project(pe, Vp)

    # Correct pa (we want to be spot on, not close)
    int_pa = dolfin.assemble(pa * dolfin.dx)
    vol = dolfin.assemble(dolfin.Constant(1.0) * dolfin.dx(domain=Vp.mesh()))
    pa.vector()[:] -= int_pa / vol

    # Calculate L2 errors
    err_u0 = calc_err(sim.data['u0'], u0a)
    err_u1 = calc_err(sim.data['u1'], u1a)
    err_p = calc_err(sim.data['p'], pa)

    # Calculate H1 errors
    err_u0_H1 = calc_err(sim.data['u0'], u0a, 'H1')
    err_u1_H1 = calc_err(sim.data['u1'], u1a, 'H1')
    err_p_H1 = calc_err(sim.data['p'], pa, 'H1')

    say('Number of time steps:', sim.timestep, tmax_warning)
    loglines = sim.log.get_full_log().split('\n')
    say('Num inner iterations:',
        sum(1 if 'Inner iteration' in line else 0 for line in loglines))
    say('max(ui_new-ui_prev)',
        sim.reporting.get_report('max(ui_new-ui_prev)')[1][-1])
    int_p = dolfin.assemble(sim.data['p'] * dolfin.dx)
    say('p*dx', int_p)
    say('pa*dx', dolfin.assemble(pa * dolfin.dx(domain=Vp.mesh())))
    div_u_Vp = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vp).vector().get_local()).max()
    say('div(u)|Vp', div_u_Vp)
    div_u_Vu = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vu).vector().get_local()).max()
    say('div(u)|Vu', div_u_Vu)
    Vdg0 = dolfin.FunctionSpace(sim.data['mesh'], "DG", 0)
    div_u_DG0 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg0).vector().get_local()).max()
    say('div(u)|DG0', div_u_DG0)
    Vdg1 = dolfin.FunctionSpace(sim.data['mesh'], "DG", 1)
    div_u_DG1 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg1).vector().get_local()).max()
    say('div(u)|DG1', div_u_DG1)

    if False:
        # Plot the results
        for fa, name in ((u0a, 'u0'), (u1a, 'u1'), (pa, 'p')):
            p1 = dolfin.plot(sim.data[name] - fa,
                             title='%s_diff' % name,
                             key='%s_diff' % name)
            p2 = dolfin.plot(fa, title=name + ' analytical', key=name)
            p1.write_png('%g_%g_%s_diff' % (N, dt, name))
            p2.write_png('%g_%g_%s' % (N, dt, name))
        dolfin.interactive()

    from numpy import argmax

    for d in range(2):
        up = sim.data['up%d' % d]
        upp = sim.data['upp%d' % d]

        V = up.function_space()
        coords = V.tabulate_dof_coordinates().reshape((-1, 2))

        up.vector()[:] -= upp.vector()
        diff = abs(up.vector().get_local())
        i = argmax(diff)
        say('Max difference in %d direction is %.4e at %r' %
            (d, diff[i], coords[i]))

        if 'uppp%d' % d in sim.data:
            uppp = sim.data['uppp%d' % d]
            upp.vector()[:] -= uppp.vector()
            diffp = abs(upp.vector().get_local())
            ip = argmax(diffp)
            say('Prev max diff. in %d direction is %.4e at %r' %
                (d, diffp[ip], coords[ip]))

    if False and N == 24:
        # dolfin.plot(sim.data['u0'], title='u0')
        # dolfin.plot(sim.data['u1'], title='u1')
        # dolfin.plot(sim.data['p'], title='p')
        # dolfin.plot(u0a, title='u0a')
        # dolfin.plot(u1a, title='u1a')
        # dolfin.plot(pa, title='pa')
        plot_err(sim.data['u0'], u0a, title='u0a - u0')
        plot_err(sim.data['u1'], u1a, title='u1a - u1')
        plot_err(sim.data['p'], pa, 'pa - p')

        # plot_err(sim.data['u0'], u0a, title='u0a - u0')
        dolfin.plot(sim.data['up0'], title='up0 - upp0')
        dolfin.plot(sim.data['upp0'], title='upp0 - uppp0')

        # plot_err(sim.data['u1'], u1a, title='u1a - u1')
        dolfin.plot(sim.data['up1'], title='up1 - upp1')
        # dolfin.plot(sim.data['upp1'], title='upp1 - uppp1')

    hmin = sim.data['mesh'].hmin()
    return err_u0, err_u1, err_p, err_u0_H1, err_u1_H1, err_p_H1, hmin, dt, duration
コード例 #18
0
def run_and_calculate_error(N, dt, tmax, polydeg_u, polydeg_p, nu, last=False):
    """
    Run Ocellaris and return L2 & H1 errors in the last time step
    """
    say(N, dt, tmax, polydeg_u, polydeg_p)

    # Setup and run simulation
    timingtypes = [
        dolfin.TimingType.user, dolfin.TimingType.system,
        dolfin.TimingType.wall
    ]
    dolfin.timings(dolfin.TimingClear_clear, timingtypes)
    sim = Simulation()
    sim.input.read_yaml('disc.inp')

    mesh_type = sim.input.get_value('mesh/type')
    if mesh_type == 'XML':
        # Create unstructured mesh with gmsh
        cmd1 = [
            'gmsh', '-string',
            'lc = %f;' % (3.14 / N), '-o',
            'disc_%d.msh' % N, '-2', 'disc.geo'
        ]
        cmd2 = ['dolfin-convert', 'disc_%d.msh' % N, 'disc.xml']
        with open('/dev/null', 'w') as devnull:
            for cmd in (cmd1, cmd2):
                say(' '.join(cmd))
                subprocess.call(cmd, stdout=devnull, stderr=devnull)
    elif mesh_type == 'UnitDisc':
        sim.input.set_value('mesh/N', N // 2)
    else:
        sim.input.set_value('mesh/Nx', N)
        sim.input.set_value('mesh/Ny', N)

    sim.input.set_value('time/dt', dt)
    sim.input.set_value('time/tmax', tmax)
    sim.input.set_value('solver/polynomial_degree_velocity', polydeg_u)
    sim.input.set_value('solver/polynomial_degree_pressure', polydeg_p)
    sim.input.set_value('physical_properties/nu', nu)
    sim.input.set_value('output/stdout_enabled', False)

    say('Running with %s %s solver ...' %
        (sim.input.get_value('solver/type'),
         sim.input.get_value('solver/function_space_velocity')))
    t1 = time.time()
    setup_simulation(sim)
    run_simulation(sim)
    duration = time.time() - t1
    say('DONE')

    # Interpolate the analytical solution to the same function space
    Vu = sim.data['Vu']
    Vp = sim.data['Vp']
    Vr = sim.data['Vrho']
    polydeg_r = Vr.ufl_element().degree()
    vals = dict(t=sim.time,
                dt=sim.dt,
                Q=sim.input.get_value('user_code/constants/Q'))
    rho_e = dolfin.Expression(
        sim.input.get_value('initial_conditions/rho_p/cpp_code'),
        degree=polydeg_r,
        **vals)
    u0e = dolfin.Expression(
        sim.input.get_value('initial_conditions/up0/cpp_code'),
        degree=polydeg_u,
        **vals)
    u1e = dolfin.Expression(
        sim.input.get_value('initial_conditions/up1/cpp_code'),
        degree=polydeg_u,
        **vals)
    pe = dolfin.Expression(
        sim.input.get_value('initial_conditions/p/cpp_code'),
        degree=polydeg_p,
        **vals)

    rho_a = dolfin.project(rho_e, Vr)
    u0a = dolfin.project(u0e, Vu)
    u1a = dolfin.project(u1e, Vu)
    pa = dolfin.project(pe, Vp)

    mesh = sim.data['mesh']
    n = dolfin.FacetNormal(mesh)

    # Correct for possible non-zero average p
    int_p = dolfin.assemble(sim.data['p'] * dolfin.dx)
    int_pa = dolfin.assemble(pa * dolfin.dx)
    vol = dolfin.assemble(dolfin.Constant(1.0) * dolfin.dx(domain=mesh))
    pa_avg = int_pa / vol
    sim.data['p'].vector()[:] += pa_avg

    # Calculate L2 errors
    err_rho = calc_err(sim.data['rho'], rho_a)
    err_u0 = calc_err(sim.data['u0'], u0a)
    err_u1 = calc_err(sim.data['u1'], u1a)
    err_p = calc_err(sim.data['p'], pa)

    # Calculate H1 errors
    err_rho_H1 = calc_err(sim.data['rho'], rho_a, 'H1')
    err_u0_H1 = calc_err(sim.data['u0'], u0a, 'H1')
    err_u1_H1 = calc_err(sim.data['u1'], u1a, 'H1')
    err_p_H1 = calc_err(sim.data['p'], pa, 'H1')

    reports = sim.reporting.timestep_xy_reports
    say('Num time steps:', sim.timestep)
    say('Num cells:', mesh.num_cells())
    Co_max, Pe_max = numpy.max(reports['Co']), numpy.max(reports['Pe'])
    say('Co_max:', Co_max)
    say('Pe_max:', Pe_max)
    say('rho_min went from %r to %r' %
        (reports['min(rho)'][0], reports['min(rho)'][-1]))
    say('rho_max went from %r to %r' %
        (reports['max(rho)'][0], reports['max(rho)'][-1]))
    m0, m1 = reports['mass'][0], reports['mass'][-1]
    say('mass error %.3e (%.3e)' % (m1 - m0, (m1 - m0) / m0))
    say('vel repr error %.3e' %
        dolfin.assemble(dolfin.dot(sim.data['u'], n) * dolfin.ds))
    say('p*dx', int_p)
    div_u_Vp = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vp).vector().get_local()).max()
    say('div(u)|Vp', div_u_Vp)
    div_u_Vu = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vu).vector().get_local()).max()
    say('div(u)|Vu', div_u_Vu)
    Vdg0 = dolfin.FunctionSpace(mesh, "DG", 0)
    div_u_DG0 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg0).vector().get_local()).max()
    say('div(u)|DG0', div_u_DG0)
    Vdg1 = dolfin.FunctionSpace(mesh, "DG", 1)
    div_u_DG1 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg1).vector().get_local()).max()
    say('div(u)|DG1', div_u_DG1)

    isoparam = mesh.ufl_coordinate_element().degree() > 1
    allways_plot = True
    if (last or allways_plot) and (
            not isoparam or sim.input.get_value('mesh/type') == 'UnitDisc'):
        # Plot the results
        for fa, name in ((u0a, 'u0'), (u1a, 'u1'), (pa, 'p'), (rho_a, 'rho')):
            fh = sim.data[name]
            if isoparam:
                # Bug in matplotlib plotting for isoparametric elements
                mesh2 = dolfin.UnitDiscMesh(dolfin.MPI.comm_world, N // 2, 1,
                                            2)
                ue = fa.function_space().ufl_element()
                V2 = dolfin.FunctionSpace(mesh2, ue.family(), ue.degree())
                fa2, fh2 = dolfin.Function(V2), dolfin.Function(V2)
                fa2.vector().set_local(fa.vector().get_local())
                fh2.vector().set_local(fh.vector().get_local())
                fa, fh = fa2, fh2
            discr = ''  # '%g_%g_' % (N, dt)
            plot(fa, name + ' analytical', '%s%s_1analytical' % (discr, name))
            plot(fh, name + ' numerical', '%s%s_2numerical' % (discr, name))
            plot(fh - fa, name + ' diff', '%s%s_3diff' % (discr, name))

    hmin = mesh.hmin()
    return err_rho, err_u0, err_u1, err_p, err_rho_H1, err_u0_H1, err_u1_H1, err_p_H1, hmin, dt, Co_max, Pe_max, duration
コード例 #19
0
ファイル: convergence.py プロジェクト: jakobes/Ocellaris
def run_and_calculate_error(N, dt, tmax, polydeg_rho, last=False):
    """
    Run Ocellaris and return L2 & H1 errors in the last time step
    """
    say(N, dt, tmax, polydeg_rho)

    # Setup and run simulation
    sim = Simulation()
    sim.input.read_yaml('transport.inp')

    mesh_type = sim.input.get_value('mesh/type')
    if mesh_type == 'XML':
        # Create unstructured mesh with gmsh
        cmd1 = [
            'gmsh', '-string',
            'lc = %f;' % (3.14 / N), '-o',
            'disc_%d.msh' % N, '-2',
            '../convergence-variable-density-disk/disc.geo'
        ]
        cmd2 = ['dolfin-convert', 'disc_%d.msh' % N, 'disc.xml']
        with open('/dev/null', 'w') as devnull:
            for cmd in (cmd1, cmd2):
                say(' '.join(cmd))
                if ISROOT:
                    subprocess.call(cmd, stdout=devnull, stderr=devnull)
    elif mesh_type == 'UnitDisc':
        sim.input.set_value('mesh/N', N // 2)
    else:
        sim.input.set_value('mesh/Nx', N)
        sim.input.set_value('mesh/Ny', N)

    sim.input.set_value('time/dt', dt)
    sim.input.set_value('time/tmax', tmax)
    sim.input.set_value('multiphase_solver/polynomial_degree_rho', polydeg_rho)
    sim.input.set_value('output/stdout_enabled', False)

    say('Running with multiphase solver %s ...' %
        (sim.input.get_value('multiphase_solver/type')))
    t1 = time.time()
    setup_simulation(sim)
    run_simulation(sim)
    duration = time.time() - t1
    say('DONE')

    # Interpolate the analytical solution to the same function space
    Vu = sim.data['Vu']
    Vp = sim.data['Vp']
    Vr = sim.data['Vrho']
    polydeg_r = Vr.ufl_element().degree()
    vals = dict(t=sim.time, dt=sim.dt)
    rho_e = dolfin.Expression(
        sim.input.get_value('initial_conditions/rho_p/cpp_code'),
        degree=polydeg_r,
        **vals)
    rho_a = dolfin.project(rho_e, Vr)

    rho_e.t = 0
    rho_0 = dolfin.project(rho_e, Vr)

    # Calculate L2 errors
    err_rho = calc_err(sim.data['rho'], rho_a)

    # Calculate H1 errors
    err_rho_H1 = calc_err(sim.data['rho'], rho_a, 'H1')

    mesh = sim.data['mesh']
    n = dolfin.FacetNormal(mesh)

    reports = sim.reporting.timestep_xy_reports
    say('Num time steps:', sim.timestep)
    say('Num cells:', mesh.num_cells())
    say('Co_max:', numpy.max(reports['Co']))
    say('rho_min went from %r to %r' %
        (reports['min(rho)'][0], reports['min(rho)'][-1]))
    say('rho_max went from %r to %r' %
        (reports['max(rho)'][0], reports['max(rho)'][-1]))
    m0, m1 = reports['mass'][0], reports['mass'][-1]
    say('mass error %.3e (%.3e)' % (m1 - m0, (m1 - m0) / m0))
    say('vel compat error %.3e' %
        dolfin.assemble(dolfin.dot(sim.data['u'], n) * dolfin.ds))
    int_p = dolfin.assemble(sim.data['p'] * dolfin.dx)
    say('p*dx', int_p)
    div_u_Vp = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vp).vector().get_local()).max()
    say('div(u)|Vp', div_u_Vp)
    div_u_Vu = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vu).vector().get_local()).max()
    say('div(u)|Vu', div_u_Vu)
    Vdg0 = dolfin.FunctionSpace(mesh, "DG", 0)
    div_u_DG0 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg0).vector().get_local()).max()
    say('div(u)|DG0', div_u_DG0)
    Vdg1 = dolfin.FunctionSpace(mesh, "DG", 1)
    div_u_DG1 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg1).vector().get_local()).max()
    say('div(u)|DG1', div_u_DG1)

    isoparam = mesh.ufl_coordinate_element().degree() > 1
    if last and (not isoparam
                 or sim.input.get_value('mesh/type') == 'UnitDisc'):
        # Plot the results
        for fa, name in ((rho_a, 'rho'), ):
            fh = sim.data[name]
            if isoparam:
                # Bug in matplotlib plotting for isoparametric elements
                mesh2 = dolfin.UnitDiscMesh(dolfin.MPI.comm_world, N // 2, 1,
                                            2)
                ue = fa.function_space().ufl_element()
                V2 = dolfin.FunctionSpace(mesh2, ue.family(), ue.degree())
                fa2, fh2 = dolfin.Function(V2), dolfin.Function(V2)
                fa2.vector().set_local(fa.vector().get_local())
                fh2.vector().set_local(fh.vector().get_local())
                fa, fh = fa2, fh2
            plot(fh - fa, name + ' diff', '%g_%g_%s_diff' % (N, dt, name))
            plot(fa, name + ' analytical',
                 '%g_%g_%s_analytical' % (N, dt, name))
            plot(fh, name + ' numerical', '%g_%g_%s_numerical' % (N, dt, name))
            plot(rho_0, name + ' initial', '%g_%g_%s_initial' % (N, dt, name))

    hmin = mesh.hmin()
    return err_rho, err_rho_H1, hmin, dt, duration
コード例 #20
0
def run_and_calculate_error(N, dt, tmax, polydeg_u, polydeg_p, modifier=None):
    """
    Run Ocellaris and return L2 & H1 errors in the last time step
    """
    say(N, dt, tmax, polydeg_u, polydeg_p)

    # Setup and run simulation
    sim = Simulation()
    sim.input.read_yaml('taylor-green.inp')

    if sim.input.get_value('mesh/type') == 'Rectangle':
        # Use structured mesh
        sim.input.set_value('mesh/Nx', N)
        sim.input.set_value('mesh/Ny', N)
    else:
        # Create unstructured mesh with gmsh
        cmd1 = [
            'gmsh',
            '-string',
            'lc = %f;' % (2.0 / N),
            '-o',
            'taylor-green_%d.msh' % N,
            '-2',
            'taylor-green.geo',
        ]
        cmd2 = [
            'dolfin-convert',
            'taylor-green_%d.msh' % N, 'taylor-green.xml'
        ]
        with open('/dev/null', 'w') as devnull:
            for cmd in (cmd1, cmd2):
                say(' '.join(cmd))
                subprocess.call(cmd, stdout=devnull, stderr=devnull)

    sim.input.set_value('time/dt', dt)
    sim.input.set_value('time/tmax', tmax)
    sim.input.set_value('solver/polynomial_degree_velocity', polydeg_u)
    sim.input.set_value('solver/polynomial_degree_pressure', polydeg_p)
    sim.input.set_value('output/stdout_enabled', False)

    if sim.input.get_value('solver/timestepping_method', 'BDF') == 'CN':
        sim.input.set_value(
            'initial_conditions/p/cpp_code',
            '-(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4*pi*pi*nu*(t+dt/2))/4',
        )

    # Turn off BDM
    # sim.input.set_value('solver/velocity_postprocessing', 'None')

    if modifier:
        modifier(sim)  # Running regression tests, modify some input params

    say('Running with %s %s solver ...' % (
        sim.input.get_value('solver/type'),
        sim.input.get_value('solver/function_space_velocity', 'DG'),
    ))
    t1 = time.time()
    setup_simulation(sim)
    if 'Vcoupled' in sim.data:
        say('Num unknowns', sim.data['Vcoupled'].dim())
    run_simulation(sim)
    duration = time.time() - t1
    say('DONE')

    # Interpolate the analytical solution to the same function space
    Vu = sim.data['Vu']
    Vp = sim.data['Vp']
    vals = dict(
        t=sim.time,
        dt=sim.dt,
        nu=sim.input['physical_properties']['nu'],
        rho=sim.input['physical_properties']['rho'],
    )
    u0e = dolfin.Expression(
        sim.input.get_value('initial_conditions/up0/cpp_code'),
        degree=polydeg_u + 3,
        **vals)
    u1e = dolfin.Expression(
        sim.input.get_value('initial_conditions/up1/cpp_code'),
        degree=polydeg_u + 3,
        **vals)
    if sim.input.get_value('solver/timestepping_method', 'BDF') == 'CN':
        vals['t'] = sim.time - sim.dt
    pe = dolfin.Expression(
        sim.input.get_value('initial_conditions/p/cpp_code'),
        degree=polydeg_p + 3,
        **vals)

    u0a = dolfin.project(u0e, Vu)
    u1a = dolfin.project(u1e, Vu)
    pa = dolfin.project(pe, Vp)

    # Calculate L2 errors
    err_u0 = calc_err(sim.data['u0'], u0a)
    err_u1 = calc_err(sim.data['u1'], u1a)
    err_p = calc_err(sim.data['p'], pa)

    # Calculate H1 errors
    err_u0_H1 = calc_err(sim.data['u0'], u0a, 'H1')
    err_u1_H1 = calc_err(sim.data['u1'], u1a, 'H1')
    err_p_H1 = calc_err(sim.data['p'], pa, 'H1')

    say('Number of time steps:', sim.timestep)
    loglines = sim.log.get_full_log().split('\n')
    say('Num inner iterations:',
        sum(1 if 'iteration' in line else 0 for line in loglines))
    int_p = dolfin.assemble(sim.data['p'] * dolfin.dx)
    say('Number of mesh cells:', sim.data['mesh'].num_cells())
    say('p*dx', int_p)
    div_u_Vp = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vp).vector().get_local()).max()
    say('div(u)|Vp', div_u_Vp)
    div_u_Vu = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vu).vector().get_local()).max()
    say('div(u)|Vu', div_u_Vu)
    Vdg0 = dolfin.FunctionSpace(sim.data['mesh'], "DG", 0)
    div_u_DG0 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg0).vector().get_local()).max()
    say('div(u)|DG0', div_u_DG0)
    Vdg1 = dolfin.FunctionSpace(sim.data['mesh'], "DG", 1)
    div_u_DG1 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg1).vector().get_local()).max()
    say('div(u)|DG1', div_u_DG1)

    if 'u_mesh' in sim.data:
        Vmesh = sim.data['Vmesh']
        div_u_mesh_Vmesh = abs(
            dolfin.project(dolfin.div(sim.data['u_mesh']),
                           Vmesh).vector().get_local()).max()
        say('div(u_mesh)|V_mesh', div_u_mesh_Vmesh)
        div_u_mesh_DG0 = abs(
            dolfin.project(dolfin.div(sim.data['u_mesh']),
                           Vdg0).vector().get_local()).max()
        say('div(u_mesh)|DG0', div_u_mesh_DG0)
        div_u_mesh_DG1 = abs(
            dolfin.project(dolfin.div(sim.data['u_mesh']),
                           Vdg1).vector().get_local()).max()
        say('div(u_mesh)|DG1', div_u_mesh_DG1)

    if False:
        # Plot the results
        for fa, name in ((u0a, 'u0'), (u1a, 'u1'), (pa, 'p')):
            p1 = dolfin.plot(sim.data[name] - fa,
                             title='%s_diff' % name,
                             key='%s_diff' % name)
            p2 = dolfin.plot(fa, title=name + ' analytical', key=name)
            p1.write_png('%g_%g_%s_diff' % (N, dt, name))
            p2.write_png('%g_%g_%s' % (N, dt, name))
        dolfin.interactive()

    if N == 40 and False:
        dolfin.plot(sim.data['u0'], title='u0')
        dolfin.plot(sim.data['u1'], title='u1')
        dolfin.plot(sim.data['p'], title='p')
        dolfin.plot(u0a, title='u0a')
        dolfin.plot(u1a, title='u1a')
        dolfin.plot(pa, title='pa')
        plot_err(sim.data['u0'], u0a, 'u0a - u0')
        plot_err(sim.data['u1'], u1a, 'u1a - u1')
        plot_err(sim.data['p'], pa, 'pa - p')

    hmin = sim.data['mesh'].hmin()
    return err_u0, err_u1, err_p, err_u0_H1, err_u1_H1, err_p_H1, hmin, dt, duration